Properties

Label 56b
Number of curves 2
Conductor 56
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("56.b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 56b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
56.b2 56b1 [0, -1, 0, 0, -4] [2] 4 \(\Gamma_0(N)\)-optimal
56.b1 56b2 [0, -1, 0, -40, -84] [2] 8  

Rank

sage: E.rank()
 

The elliptic curves in class 56b have rank \(0\).

Modular form 56.2.a.b

sage: E.q_eigenform(10)
 
\( q + 2q^{3} - 4q^{5} + q^{7} + q^{9} - 8q^{15} - 2q^{17} - 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.