Learn more

Refine search


Results (1-50 of 114 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
56550.a1 56550.a \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $1.390135373$ $[1, 1, 0, -47625, -3922875]$ \(y^2+xy=x^3+x^2-47625x-3922875\)
56550.a2 56550.a \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $1.390135373$ $[1, 1, 0, 10375, -12796875]$ \(y^2+xy=x^3+x^2+10375x-12796875\)
56550.b1 56550.b \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $1.674011376$ $[1, 1, 0, -63390, 4698450]$ \(y^2+xy=x^3+x^2-63390x+4698450\)
56550.b2 56550.b \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.837005688$ $[1, 1, 0, -21340, -1146500]$ \(y^2+xy=x^3+x^2-21340x-1146500\)
56550.c1 56550.c \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $1.890074959$ $[1, 1, 0, -3070, 58900]$ \(y^2+xy=x^3+x^2-3070x+58900\)
56550.c2 56550.c \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.945037479$ $[1, 1, 0, -670, -5900]$ \(y^2+xy=x^3+x^2-670x-5900\)
56550.d1 56550.d \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $4.607178049$ $[1, 1, 0, -20325, -997875]$ \(y^2+xy=x^3+x^2-20325x-997875\)
56550.e1 56550.e \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -190196190, 1005700058100]$ \(y^2+xy=x^3+x^2-190196190x+1005700058100\)
56550.e2 56550.e \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -17959390, -2057458700]$ \(y^2+xy=x^3+x^2-17959390x-2057458700\)
56550.f1 56550.f \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 175, -4125]$ \(y^2+xy=x^3+x^2+175x-4125\)
56550.g1 56550.g \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $8.632483855$ $[1, 1, 0, -104414875, -410712246875]$ \(y^2+xy=x^3+x^2-104414875x-410712246875\)
56550.g2 56550.g \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.316241927$ $[1, 1, 0, -6539875, -6390621875]$ \(y^2+xy=x^3+x^2-6539875x-6390621875\)
56550.g3 56550.g \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $8.632483855$ $[1, 1, 0, -1976875, -15137892875]$ \(y^2+xy=x^3+x^2-1976875x-15137892875\)
56550.g4 56550.g \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.158120963$ $[1, 1, 0, -707875, 65402125]$ \(y^2+xy=x^3+x^2-707875x+65402125\)
56550.h1 56550.h \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1618025, -792766875]$ \(y^2+xy=x^3+x^2-1618025x-792766875\)
56550.h2 56550.h \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -650025, 193465125]$ \(y^2+xy=x^3+x^2-650025x+193465125\)
56550.h3 56550.h \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -110025, -10114875]$ \(y^2+xy=x^3+x^2-110025x-10114875\)
56550.h4 56550.h \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 17975, -1026875]$ \(y^2+xy=x^3+x^2+17975x-1026875\)
56550.i1 56550.i \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2412950, 942556500]$ \(y^2+xy=x^3+x^2-2412950x+942556500\)
56550.i2 56550.i \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2172950, 1231756500]$ \(y^2+xy=x^3+x^2-2172950x+1231756500\)
56550.j1 56550.j \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $60.21431651$ $[1, 1, 0, -20710950, -35823163500]$ \(y^2+xy=x^3+x^2-20710950x-35823163500\)
56550.k1 56550.k \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1609790, -786814860]$ \(y^2+xy=x^3+x^2-1609790x-786814860\)
56550.l1 56550.l \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -4500, -127650]$ \(y^2+xy=x^3+x^2-4500x-127650\)
56550.l2 56550.l \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 4925, 8702125]$ \(y^2+xy=x^3+x^2+4925x+8702125\)
56550.m1 56550.m \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -6975, 253125]$ \(y^2+xy=x^3+x^2-6975x+253125\)
56550.n1 56550.n \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -39024855, -94227416235]$ \(y^2+xy=x^3+x^2-39024855x-94227416235\)
56550.o1 56550.o \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -415, -10235]$ \(y^2+xy=x^3+x^2-415x-10235\)
56550.p1 56550.p \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 21875, -1953125]$ \(y^2+xy=x^3+x^2+21875x-1953125\)
56550.q1 56550.q \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -281, -1252]$ \(y^2+xy+y=x^3-281x-1252\)
56550.r1 56550.r \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -242276, -15014302]$ \(y^2+xy+y=x^3-242276x-15014302\)
56550.r2 56550.r \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 909724, -116390302]$ \(y^2+xy+y=x^3+909724x-116390302\)
56550.s1 56550.s \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -4076, 99548]$ \(y^2+xy+y=x^3-4076x+99548\)
56550.t1 56550.t \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -11304701, -14630022952]$ \(y^2+xy+y=x^3-11304701x-14630022952\)
56550.u1 56550.u \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.933941470$ $[1, 0, 1, -5830976, -5419994902]$ \(y^2+xy+y=x^3-5830976x-5419994902\)
56550.u2 56550.u \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.466970735$ $[1, 0, 1, -364476, -84690902]$ \(y^2+xy+y=x^3-364476x-84690902\)
56550.u3 56550.u \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.933941470$ $[1, 0, 1, -305976, -112770902]$ \(y^2+xy+y=x^3-305976x-112770902\)
56550.u4 56550.u \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $5.867882940$ $[1, 0, 1, -200476, 33933098]$ \(y^2+xy+y=x^3-200476x+33933098\)
56550.u5 56550.u \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.933941470$ $[1, 0, 1, -26476, -866902]$ \(y^2+xy+y=x^3-26476x-866902\)
56550.u6 56550.u \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $5.867882940$ $[1, 0, 1, 5524, -98902]$ \(y^2+xy+y=x^3+5524x-98902\)
56550.v1 56550.v \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $5.352926244$ $[1, 0, 1, -31334876, -67515974602]$ \(y^2+xy+y=x^3-31334876x-67515974602\)
56550.v2 56550.v \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.676463122$ $[1, 0, 1, -1972376, -1039274602]$ \(y^2+xy+y=x^3-1972376x-1039274602\)
56550.v3 56550.v \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.338231561$ $[1, 0, 1, -290376, 37205398]$ \(y^2+xy+y=x^3-290376x+37205398\)
56550.v4 56550.v \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.676463122$ $[1, 0, 1, -258376, 50517398]$ \(y^2+xy+y=x^3-258376x+50517398\)
56550.v5 56550.v \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $1.338231561$ $[1, 0, 1, 478124, -3450566602]$ \(y^2+xy+y=x^3+478124x-3450566602\)
56550.v6 56550.v \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.676463122$ $[1, 0, 1, 879624, 261845398]$ \(y^2+xy+y=x^3+879624x+261845398\)
56550.w1 56550.w \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $2.533940279$ $[1, 0, 1, 190299, 76492048]$ \(y^2+xy+y=x^3+190299x+76492048\)
56550.x1 56550.x \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $19.56093301$ $[1, 0, 1, -92069076, -340039046702]$ \(y^2+xy+y=x^3-92069076x-340039046702\)
56550.y1 56550.y \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -351, 5248]$ \(y^2+xy+y=x^3-351x+5248\)
56550.y2 56550.y \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 3024, -112202]$ \(y^2+xy+y=x^3+3024x-112202\)
56550.z1 56550.z \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.366899600$ $[1, 0, 1, -421, 2588]$ \(y^2+xy+y=x^3-421x+2588\)
Next   Download to