Properties

Label 56350.q
Number of curves $1$
Conductor $56350$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("q1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 56350.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
56350.q1 56350l1 \([1, -1, 0, 13123, -11669729]\) \(84972077055/20040095362\) \(-58942429481098450\) \([]\) \(387072\) \(1.8971\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 56350.q1 has rank \(1\).

Complex multiplication

The elliptic curves in class 56350.q do not have complex multiplication.

Modular form 56350.2.a.q

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} - 3q^{9} + 4q^{11} - 3q^{13} + q^{16} - q^{17} + 3q^{18} + O(q^{20})\)  Toggle raw display