# Properties

 Label 5610b1 Conductor $5610$ Discriminant $-29082240$ j-invariant $$\frac{2053225511}{29082240}$$ CM no Rank $0$ Torsion structure trivial

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 0, 27, -243]) # or

sage: E = EllipticCurve("5610b1")

gp: E = ellinit([1, 1, 0, 27, -243]) \\ or

gp: E = ellinit("5610b1")

magma: E := EllipticCurve([1, 1, 0, 27, -243]); // or

magma: E := EllipticCurve("5610b1");

$$y^2 + x y = x^{3} + x^{2} + 27 x - 243$$

trivial

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$5610$$ = $$2 \cdot 3 \cdot 5 \cdot 11 \cdot 17$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-29082240$$ = $$-1 \cdot 2^{7} \cdot 3^{5} \cdot 5 \cdot 11 \cdot 17$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{2053225511}{29082240}$$ = $$2^{-7} \cdot 3^{-5} \cdot 5^{-1} \cdot 11^{-1} \cdot 17^{-1} \cdot 31^{3} \cdot 41^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$1.02658108023$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$1$$  = $$1\cdot1\cdot1\cdot1\cdot1$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - q^{11} - q^{12} - q^{14} + q^{15} + q^{16} + q^{17} - q^{18} + 4q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1680 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$1.02658108023$$

## Local data

This elliptic curve is semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$I_{7}$$ Non-split multiplicative 1 1 7 7
$$3$$ $$1$$ $$I_{5}$$ Non-split multiplicative 1 1 5 5
$$5$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$11$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$17$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit nonsplit nonsplit ordinary nonsplit ss split ordinary ordinary ordinary ordinary ordinary ss ordinary ordinary 1 0 0 2 0 0,0 1 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0,0 0 0

## Isogenies

This curve has no rational isogenies. Its isogeny class 5610b consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$3$ 3.1.22440.1 $$\Z/2\Z$$ Not in database
$6$ 6.0.11299742784000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.