Show commands:
SageMath
E = EllipticCurve("w1")
E.isogeny_class()
Elliptic curves in class 5610.w
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5610.w1 | 5610z1 | \([1, 1, 1, -1024276, -399370027]\) | \(118843307222596927933249/19794099600000000\) | \(19794099600000000\) | \([2]\) | \(134400\) | \(2.1348\) | \(\Gamma_0(N)\)-optimal |
5610.w2 | 5610z2 | \([1, 1, 1, -924276, -480330027]\) | \(-87323024620536113533249/48975797371840020000\) | \(-48975797371840020000\) | \([2]\) | \(268800\) | \(2.4814\) |
Rank
sage: E.rank()
The elliptic curves in class 5610.w have rank \(1\).
Complex multiplication
The elliptic curves in class 5610.w do not have complex multiplication.Modular form 5610.2.a.w
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.