Show commands:
SageMath
E = EllipticCurve("v1")
E.isogeny_class()
Elliptic curves in class 5610.v
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5610.v1 | 5610s3 | \([1, 0, 1, -2723, -54904]\) | \(2231707882611241/7466910\) | \(7466910\) | \([2]\) | \(4096\) | \(0.54058\) | |
5610.v2 | 5610s4 | \([1, 0, 1, -503, 3248]\) | \(14034143923561/3445241250\) | \(3445241250\) | \([2]\) | \(4096\) | \(0.54058\) | |
5610.v3 | 5610s2 | \([1, 0, 1, -173, -844]\) | \(567869252041/31472100\) | \(31472100\) | \([2, 2]\) | \(2048\) | \(0.19401\) | |
5610.v4 | 5610s1 | \([1, 0, 1, 7, -52]\) | \(46268279/1211760\) | \(-1211760\) | \([2]\) | \(1024\) | \(-0.15256\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 5610.v have rank \(0\).
Complex multiplication
The elliptic curves in class 5610.v do not have complex multiplication.Modular form 5610.2.a.v
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.