Properties

Label 5610.v
Number of curves $4$
Conductor $5610$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("v1")
 
E.isogeny_class()
 

Elliptic curves in class 5610.v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5610.v1 5610s3 \([1, 0, 1, -2723, -54904]\) \(2231707882611241/7466910\) \(7466910\) \([2]\) \(4096\) \(0.54058\)  
5610.v2 5610s4 \([1, 0, 1, -503, 3248]\) \(14034143923561/3445241250\) \(3445241250\) \([2]\) \(4096\) \(0.54058\)  
5610.v3 5610s2 \([1, 0, 1, -173, -844]\) \(567869252041/31472100\) \(31472100\) \([2, 2]\) \(2048\) \(0.19401\)  
5610.v4 5610s1 \([1, 0, 1, 7, -52]\) \(46268279/1211760\) \(-1211760\) \([2]\) \(1024\) \(-0.15256\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5610.v have rank \(0\).

Complex multiplication

The elliptic curves in class 5610.v do not have complex multiplication.

Modular form 5610.2.a.v

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + 4 q^{7} - q^{8} + q^{9} - q^{10} + q^{11} + q^{12} + 2 q^{13} - 4 q^{14} + q^{15} + q^{16} - q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.