Properties

Label 5610.o
Number of curves $4$
Conductor $5610$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 5610.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5610.o1 5610n4 \([1, 0, 1, -220364, -39529438]\) \(1183430669265454849849/10449720703125000\) \(10449720703125000\) \([2]\) \(69120\) \(1.8973\)  
5610.o2 5610n3 \([1, 0, 1, -23844, 403426]\) \(1499114720492202169/796539777000000\) \(796539777000000\) \([2]\) \(34560\) \(1.5507\)  
5610.o3 5610n2 \([1, 0, 1, -18899, 966116]\) \(746461053445307689/27443694341250\) \(27443694341250\) \([6]\) \(23040\) \(1.3480\)  
5610.o4 5610n1 \([1, 0, 1, -18729, 984952]\) \(726497538898787209/1038579300\) \(1038579300\) \([6]\) \(11520\) \(1.0014\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5610.o have rank \(1\).

Complex multiplication

The elliptic curves in class 5610.o do not have complex multiplication.

Modular form 5610.2.a.o

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + 2 q^{7} - q^{8} + q^{9} + q^{10} + q^{11} + q^{12} - 4 q^{13} - 2 q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.