Show commands:
SageMath
E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 5610.o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5610.o1 | 5610n4 | \([1, 0, 1, -220364, -39529438]\) | \(1183430669265454849849/10449720703125000\) | \(10449720703125000\) | \([2]\) | \(69120\) | \(1.8973\) | |
5610.o2 | 5610n3 | \([1, 0, 1, -23844, 403426]\) | \(1499114720492202169/796539777000000\) | \(796539777000000\) | \([2]\) | \(34560\) | \(1.5507\) | |
5610.o3 | 5610n2 | \([1, 0, 1, -18899, 966116]\) | \(746461053445307689/27443694341250\) | \(27443694341250\) | \([6]\) | \(23040\) | \(1.3480\) | |
5610.o4 | 5610n1 | \([1, 0, 1, -18729, 984952]\) | \(726497538898787209/1038579300\) | \(1038579300\) | \([6]\) | \(11520\) | \(1.0014\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 5610.o have rank \(1\).
Complex multiplication
The elliptic curves in class 5610.o do not have complex multiplication.Modular form 5610.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.