Properties

Label 5610.h2
Conductor $5610$
Discriminant $7.200\times 10^{15}$
j-invariant \( \frac{21754112339458491481}{7199734626562500} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z \times \Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 0, -58157, -3556311]) # or
 
sage: E = EllipticCurve("5610i2")
 
gp: E = ellinit([1, 1, 0, -58157, -3556311]) \\ or
 
gp: E = ellinit("5610i2")
 
magma: E := EllipticCurve([1, 1, 0, -58157, -3556311]); // or
 
magma: E := EllipticCurve("5610i2");
 

\( y^2 + x y = x^{3} + x^{2} - 58157 x - 3556311 \)

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z \times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \( \left(-187, 1001\right) \)
\(\hat{h}(P)\) ≈  $0.3597130647710317$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-66, 33\right) \), \( \left(\frac{1067}{4}, -\frac{1067}{8}\right) \)

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-202, 101\right) \), \( \left(-187, 1001\right) \), \( \left(-187, -814\right) \), \( \left(-77, 726\right) \), \( \left(-77, -649\right) \), \( \left(-66, 33\right) \), \( \left(308, 2651\right) \), \( \left(308, -2959\right) \), \( \left(473, 8426\right) \), \( \left(473, -8899\right) \), \( \left(478, 8601\right) \), \( \left(478, -9079\right) \), \( \left(1023, 31251\right) \), \( \left(1023, -32274\right) \), \( \left(3905, 241637\right) \), \( \left(3905, -245542\right) \), \( \left(4048, 255101\right) \), \( \left(4048, -259149\right) \), \( \left(12252548, 42882253601\right) \), \( \left(12252548, -42894506149\right) \)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 5610 \)  =  \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 17\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(7199734626562500 \)  =  \(2^{2} \cdot 3^{2} \cdot 5^{8} \cdot 11^{6} \cdot 17^{2} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{21754112339458491481}{7199734626562500} \)  =  \(2^{-2} \cdot 3^{-2} \cdot 5^{-8} \cdot 11^{-6} \cdot 17^{-2} \cdot 2791561^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Rank: \(1\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(0.359713064771\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.315586770669\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 384 \)  = \( 2\cdot2\cdot2^{3}\cdot( 2 \cdot 3 )\cdot2 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(4\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form   5610.2.a.h

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{8} + q^{9} - q^{10} + q^{11} - q^{12} + 2q^{13} - q^{15} + q^{16} - q^{17} - q^{18} + 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 36864
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L'(E,1) \) ≈ \( 2.72449642748 \)

Local data

This elliptic curve is semistable.

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \( I_{2} \) Non-split multiplicative 1 1 2 2
\(3\) \(2\) \( I_{2} \) Non-split multiplicative 1 1 2 2
\(5\) \(8\) \( I_{8} \) Split multiplicative -1 1 8 8
\(11\) \(6\) \( I_{6} \) Split multiplicative -1 1 6 6
\(17\) \(2\) \( I_{2} \) Non-split multiplicative 1 1 2 2

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $$ and has index 6.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) Cs

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit nonsplit split ss split ordinary nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ordinary ss
$\lambda$-invariant(s) 5 1 2 3,1 2 3 1 1 1 1 1 1 1 1 1,1
$\mu$-invariant(s) 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0,0

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 5610.h consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$4$ \(\Q(\sqrt{3}, \sqrt{11})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{-3}, \sqrt{-34})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{-11}, \sqrt{34})\) \(\Z/2\Z \times \Z/4\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.