Properties

Label 5610.bj
Number of curves $2$
Conductor $5610$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bj1")
 
E.isogeny_class()
 

Elliptic curves in class 5610.bj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5610.bj1 5610bh1 \([1, 0, 0, -281, 2145]\) \(-2454365649169/610929000\) \(-610929000\) \([3]\) \(4752\) \(0.40383\) \(\Gamma_0(N)\)-optimal
5610.bj2 5610bh2 \([1, 0, 0, 2029, -14949]\) \(923754305147471/633316406250\) \(-633316406250\) \([]\) \(14256\) \(0.95314\)  

Rank

sage: E.rank()
 

The elliptic curves in class 5610.bj have rank \(0\).

Complex multiplication

The elliptic curves in class 5610.bj do not have complex multiplication.

Modular form 5610.2.a.bj

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + 5 q^{7} + q^{8} + q^{9} - q^{10} + q^{11} + q^{12} - 4 q^{13} + 5 q^{14} - q^{15} + q^{16} - q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.