Show commands:
SageMath
E = EllipticCurve("bj1")
E.isogeny_class()
Elliptic curves in class 5610.bj
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5610.bj1 | 5610bh1 | \([1, 0, 0, -281, 2145]\) | \(-2454365649169/610929000\) | \(-610929000\) | \([3]\) | \(4752\) | \(0.40383\) | \(\Gamma_0(N)\)-optimal |
5610.bj2 | 5610bh2 | \([1, 0, 0, 2029, -14949]\) | \(923754305147471/633316406250\) | \(-633316406250\) | \([]\) | \(14256\) | \(0.95314\) |
Rank
sage: E.rank()
The elliptic curves in class 5610.bj have rank \(0\).
Complex multiplication
The elliptic curves in class 5610.bj do not have complex multiplication.Modular form 5610.2.a.bj
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.