Properties

Label 5610.bi
Number of curves $4$
Conductor $5610$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bi1")
 
E.isogeny_class()
 

Elliptic curves in class 5610.bi

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5610.bi1 5610bg3 \([1, 0, 0, -107371, 4812815]\) \(136894171818794254129/69177425857031250\) \(69177425857031250\) \([2]\) \(81920\) \(1.9239\)  
5610.bi2 5610bg2 \([1, 0, 0, -86801, 9827781]\) \(72326626749631816849/69403061722500\) \(69403061722500\) \([2, 2]\) \(40960\) \(1.5773\)  
5610.bi3 5610bg1 \([1, 0, 0, -86781, 9832545]\) \(72276643492008825169/66646800\) \(66646800\) \([4]\) \(20480\) \(1.2307\) \(\Gamma_0(N)\)-optimal
5610.bi4 5610bg4 \([1, 0, 0, -66551, 14537931]\) \(-32597768919523300849/72509045805004050\) \(-72509045805004050\) \([2]\) \(81920\) \(1.9239\)  

Rank

sage: E.rank()
 

The elliptic curves in class 5610.bi have rank \(0\).

Complex multiplication

The elliptic curves in class 5610.bi do not have complex multiplication.

Modular form 5610.2.a.bi

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + 4 q^{7} + q^{8} + q^{9} - q^{10} - q^{11} + q^{12} + 6 q^{13} + 4 q^{14} - q^{15} + q^{16} + q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.