Show commands:
SageMath
E = EllipticCurve("bg1")
E.isogeny_class()
Elliptic curves in class 5610.bg
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5610.bg1 | 5610bf2 | \([1, 0, 0, -11764986, -15533261340]\) | \(-180093466903641160790448289/4344384000\) | \(-4344384000\) | \([]\) | \(136080\) | \(2.2968\) | |
5610.bg2 | 5610bf1 | \([1, 0, 0, -145146, -21349404]\) | \(-338173143620095981729/979226371031040\) | \(-979226371031040\) | \([3]\) | \(45360\) | \(1.7475\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 5610.bg have rank \(0\).
Complex multiplication
The elliptic curves in class 5610.bg do not have complex multiplication.Modular form 5610.2.a.bg
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.