Properties

Label 5610.be
Number of curves $4$
Conductor $5610$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("be1")
 
E.isogeny_class()
 

Elliptic curves in class 5610.be

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5610.be1 5610be4 \([1, 0, 0, -178426, -25264420]\) \(628200507126935410849/88124751829125000\) \(88124751829125000\) \([2]\) \(82944\) \(1.9777\)  
5610.be2 5610be2 \([1, 0, 0, -45586, 3738116]\) \(10476561483361670689/13992628953600\) \(13992628953600\) \([6]\) \(27648\) \(1.4283\)  
5610.be3 5610be1 \([1, 0, 0, -2066, 91140]\) \(-975276594443809/3037581803520\) \(-3037581803520\) \([6]\) \(13824\) \(1.0818\) \(\Gamma_0(N)\)-optimal
5610.be4 5610be3 \([1, 0, 0, 18094, -2114364]\) \(655127711084516831/2313151512408000\) \(-2313151512408000\) \([2]\) \(41472\) \(1.6311\)  

Rank

sage: E.rank()
 

The elliptic curves in class 5610.be have rank \(1\).

Complex multiplication

The elliptic curves in class 5610.be do not have complex multiplication.

Modular form 5610.2.a.be

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - 4 q^{7} + q^{8} + q^{9} - q^{10} - q^{11} + q^{12} + 2 q^{13} - 4 q^{14} - q^{15} + q^{16} - q^{17} + q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.