Properties

Label 5610.a
Number of curves $2$
Conductor $5610$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("5610.a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 5610.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
5610.a1 5610c2 [1, 1, 0, -719108, -234128688] [2] 99840  
5610.a2 5610c1 [1, 1, 0, -22788, -7267632] [2] 49920 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5610.a have rank \(0\).

Modular form 5610.2.a.a

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - 2q^{7} - q^{8} + q^{9} + q^{10} - q^{11} - q^{12} + 2q^{14} + q^{15} + q^{16} + q^{17} - q^{18} - 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.