Properties

Label 55506q
Number of curves $4$
Conductor $55506$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 55506q have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(29\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 55506q do not have complex multiplication.

Modular form 55506.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + 2 q^{5} - q^{6} - 4 q^{7} - q^{8} + q^{9} - 2 q^{10} + q^{11} + q^{12} - 6 q^{13} + 4 q^{14} + 2 q^{15} + q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 55506q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55506.u4 55506q1 \([1, 0, 1, -1700, 338]\) \(912673/528\) \(314066713488\) \([2]\) \(96768\) \(0.89555\) \(\Gamma_0(N)\)-optimal
55506.u2 55506q2 \([1, 0, 1, -18520, -968494]\) \(1180932193/4356\) \(2591050386276\) \([2, 2]\) \(193536\) \(1.2421\)  
55506.u3 55506q3 \([1, 0, 1, -10110, -1849862]\) \(-192100033/2371842\) \(-1410826935327282\) \([2]\) \(387072\) \(1.5887\)  
55506.u1 55506q4 \([1, 0, 1, -296050, -62025094]\) \(4824238966273/66\) \(39258339186\) \([2]\) \(387072\) \(1.5887\)