Properties

Label 55506j
Number of curves $1$
Conductor $55506$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 55506j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55506.l1 55506j1 \([1, 1, 0, -547508, 148637520]\) \(25662819414780409/1315467952128\) \(930405488649043968\) \([]\) \(1503360\) \(2.2058\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 55506j1 has rank \(0\).

Complex multiplication

The elliptic curves in class 55506j do not have complex multiplication.

Modular form 55506.2.a.j

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + 4 q^{5} + q^{6} + 3 q^{7} - q^{8} + q^{9} - 4 q^{10} - q^{11} - q^{12} + 2 q^{13} - 3 q^{14} - 4 q^{15} + q^{16} - q^{17} - q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display