sage:E = EllipticCurve("d1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 5547d1 has
rank 1.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 3 | 1+T |
| 43 | 1 |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 2 |
1−2T+2T2 |
1.2.ac
|
| 5 |
1+2T+5T2 |
1.5.c
|
| 7 |
1+3T+7T2 |
1.7.d
|
| 11 |
1+6T+11T2 |
1.11.g
|
| 13 |
1−T+13T2 |
1.13.ab
|
| 17 |
1−6T+17T2 |
1.17.ag
|
| 19 |
1+4T+19T2 |
1.19.e
|
| 23 |
1+4T+23T2 |
1.23.e
|
| 29 |
1−6T+29T2 |
1.29.ag
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
The elliptic curves in class 5547d do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 5547d
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
| 5547.c1 |
5547d1 |
[0,1,1,−35747,−2623132] |
−799178752/3483 |
−22017307499667 |
[] |
14784 |
1.4135
|
Γ0(N)-optimal |