Properties

Label 5547d
Number of curves 11
Conductor 55475547
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 5547d1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
331+T1 + T
434311
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 12T+2T2 1 - 2 T + 2 T^{2} 1.2.ac
55 1+2T+5T2 1 + 2 T + 5 T^{2} 1.5.c
77 1+3T+7T2 1 + 3 T + 7 T^{2} 1.7.d
1111 1+6T+11T2 1 + 6 T + 11 T^{2} 1.11.g
1313 1T+13T2 1 - T + 13 T^{2} 1.13.ab
1717 16T+17T2 1 - 6 T + 17 T^{2} 1.17.ag
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5547d do not have complex multiplication.

Modular form 5547.2.a.d

Copy content sage:E.q_eigenform(10)
 
q+q32q4+2q5+2q7+q95q112q12+3q13+2q15+4q163q172q19+O(q20)q + q^{3} - 2 q^{4} + 2 q^{5} + 2 q^{7} + q^{9} - 5 q^{11} - 2 q^{12} + 3 q^{13} + 2 q^{15} + 4 q^{16} - 3 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 5547d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5547.c1 5547d1 [0,1,1,35747,2623132][0, 1, 1, -35747, -2623132] 799178752/3483-799178752/3483 22017307499667-22017307499667 [][] 1478414784 1.41351.4135 Γ0(N)\Gamma_0(N)-optimal