Properties

Label 5547c
Number of curves 11
Conductor 55475547
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 5547c1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
331T1 - T
434311
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1+2T2 1 + 2 T^{2} 1.2.a
55 12T+5T2 1 - 2 T + 5 T^{2} 1.5.ac
77 12T+7T2 1 - 2 T + 7 T^{2} 1.7.ac
1111 1+5T+11T2 1 + 5 T + 11 T^{2} 1.11.f
1313 13T+13T2 1 - 3 T + 13 T^{2} 1.13.ad
1717 1+3T+17T2 1 + 3 T + 17 T^{2} 1.17.d
1919 1+2T+19T2 1 + 2 T + 19 T^{2} 1.19.c
2323 1+T+23T2 1 + T + 23 T^{2} 1.23.b
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5547c do not have complex multiplication.

Modular form 5547.2.a.c

Copy content sage:E.q_eigenform(10)
 
q2q2+q3+2q4+2q52q6+3q7+q94q106q11+2q12+q136q14+2q154q16+6q172q18+4q19+O(q20)q - 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{5} - 2 q^{6} + 3 q^{7} + q^{9} - 4 q^{10} - 6 q^{11} + 2 q^{12} + q^{13} - 6 q^{14} + 2 q^{15} - 4 q^{16} + 6 q^{17} - 2 q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 5547c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5547.a1 5547c1 [0,1,1,26502,1858844][0, 1, 1, -26502, 1858844] 176128/27-176128/27 315581407495227-315581407495227 [][] 3792637926 1.51121.5112 Γ0(N)\Gamma_0(N)-optimal