# Properties

 Label 55470i1 Conductor $55470$ Discriminant $-1.553\times 10^{21}$ j-invariant $$-\frac{388982677010590321}{839808000000000000}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -186659, 1896143582]) # or

sage: E = EllipticCurve("55470i1")

gp: E = ellinit([1, 0, 1, -186659, 1896143582]) \\ or

gp: E = ellinit("55470i1")

magma: E := EllipticCurve([1, 0, 1, -186659, 1896143582]); // or

magma: E := EllipticCurve("55470i1");

$$y^2 + x y + y = x^{3} - 186659 x + 1896143582$$

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(2946, 162589\right)$$ $$\hat{h}(P)$$ ≈ $2.4582622354652424$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(2946, 162589\right)$$, $$\left(2946, -165536\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$55470$$ = $$2 \cdot 3 \cdot 5 \cdot 43^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-1552804992000000000000$$ = $$-1 \cdot 2^{19} \cdot 3^{8} \cdot 5^{12} \cdot 43^{2}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{388982677010590321}{839808000000000000}$$ = $$-1 \cdot 2^{-19} \cdot 3^{-8} \cdot 5^{-12} \cdot 43 \cdot 101^{3} \cdot 2063^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$2.45826223547$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.121063275352$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$16$$  = $$1\cdot2^{3}\cdot2\cdot1$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 55470.2.a.f

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - 2q^{7} - q^{8} + q^{9} + q^{10} - q^{11} + q^{12} + 4q^{13} + 2q^{14} - q^{15} + q^{16} + q^{17} - q^{18} + 5q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 2451456 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$4.76168444641$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$I_{19}$$ Non-split multiplicative 1 1 19 19
$$3$$ $$8$$ $$I_{8}$$ Split multiplicative -1 1 8 8
$$5$$ $$2$$ $$I_{12}$$ Non-split multiplicative 1 1 12 12
$$43$$ $$1$$ $$II$$ Additive -1 2 2 0

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X4.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 7 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 1 & 1 \end{array}\right)$ and has index 2.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge 5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit split nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ss ordinary ordinary ordinary add ordinary 6 4 1 1 1 1 1 1 1 1,1 1 1 1 - 1 0 0 0 0 0 0 0 0 0 0,0 0 0 0 - 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 55470i consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$3$ 3.1.14792.1 $$\Z/2\Z$$ Not in database
$6$ 6.0.1750426112.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.