Properties

Label 55470bd
Number of curves $4$
Conductor $55470$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("bd1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 55470bd

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
55470.x3 55470bd1 \([1, 1, 1, -126695, 17282957]\) \(35578826569/51600\) \(326182333328400\) \([4]\) \(354816\) \(1.6869\) \(\Gamma_0(N)\)-optimal
55470.x2 55470bd2 \([1, 1, 1, -163675, 6322085]\) \(76711450249/41602500\) \(262984506246022500\) \([2, 2]\) \(709632\) \(2.0335\)  
55470.x4 55470bd3 \([1, 1, 1, 631395, 50527977]\) \(4403686064471/2721093750\) \(-17201021484114843750\) \([2]\) \(1419264\) \(2.3801\)  
55470.x1 55470bd4 \([1, 1, 1, -1550425, -738640015]\) \(65202655558249/512820150\) \(3241722346992637350\) \([2]\) \(1419264\) \(2.3801\)  

Rank

sage: E.rank()
 

The elliptic curves in class 55470bd have rank \(0\).

Complex multiplication

The elliptic curves in class 55470bd do not have complex multiplication.

Modular form 55470.2.a.bd

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} - 4q^{7} + q^{8} + q^{9} + q^{10} - q^{12} - 2q^{13} - 4q^{14} - q^{15} + q^{16} + 2q^{17} + q^{18} - 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.