Properties

Label 5520.y
Number of curves $2$
Conductor $5520$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("y1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 5520.y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5520.y1 5520bc2 \([0, 1, 0, -27976, 1569140]\) \(591202341974089/79350000000\) \(325017600000000\) \([2]\) \(21504\) \(1.5121\)  
5520.y2 5520bc1 \([0, 1, 0, 2744, 131444]\) \(557644990391/2119680000\) \(-8682209280000\) \([2]\) \(10752\) \(1.1655\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5520.y have rank \(0\).

Complex multiplication

The elliptic curves in class 5520.y do not have complex multiplication.

Modular form 5520.2.a.y

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + 2q^{7} + q^{9} - 6q^{11} - 2q^{13} - q^{15} + 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.