Show commands:
SageMath
E = EllipticCurve("v1")
E.isogeny_class()
Elliptic curves in class 5520.v
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5520.v1 | 5520g3 | \([0, 1, 0, -1056, -13356]\) | \(63649751618/1164375\) | \(2384640000\) | \([2]\) | \(3072\) | \(0.59423\) | |
5520.v2 | 5520g2 | \([0, 1, 0, -136, 260]\) | \(273671716/119025\) | \(121881600\) | \([2, 2]\) | \(1536\) | \(0.24766\) | |
5520.v3 | 5520g1 | \([0, 1, 0, -116, 444]\) | \(680136784/345\) | \(88320\) | \([2]\) | \(768\) | \(-0.098917\) | \(\Gamma_0(N)\)-optimal |
5520.v4 | 5520g4 | \([0, 1, 0, 464, 2420]\) | \(5382838942/4197615\) | \(-8596715520\) | \([2]\) | \(3072\) | \(0.59423\) |
Rank
sage: E.rank()
The elliptic curves in class 5520.v have rank \(1\).
Complex multiplication
The elliptic curves in class 5520.v do not have complex multiplication.Modular form 5520.2.a.v
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.