Properties

Label 550.l
Number of curves $1$
Conductor $550$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 550.l1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 550.l do not have complex multiplication.

Modular form 550.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + 2 q^{3} + q^{4} + 2 q^{6} + q^{8} + q^{9} + q^{11} + 2 q^{12} + 3 q^{13} + q^{16} - 4 q^{17} + q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 550.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
550.l1 550m1 \([1, 1, 1, -5138, -143969]\) \(-38401771585/22528\) \(-8800000000\) \([]\) \(660\) \(0.85315\) \(\Gamma_0(N)\)-optimal