# Properties

 Label 546.d3 Conductor $546$ Discriminant $-14329224$ j-invariant $$\frac{270840023}{14329224}$$ CM no Rank $0$ Torsion structure $$\Z/{3}\Z$$

# Related objects

Show commands: Magma / Oscar / PariGP / SageMath

## Simplified equation

 $$y^2+xy+y=x^3+13x+182$$ y^2+xy+y=x^3+13x+182 (homogenize, simplify) $$y^2z+xyz+yz^2=x^3+13xz^2+182z^3$$ y^2z+xyz+yz^2=x^3+13xz^2+182z^3 (dehomogenize, simplify) $$y^2=x^3+17469x+8450622$$ y^2=x^3+17469x+8450622 (homogenize, minimize)

comment: Define the curve

sage: E = EllipticCurve([1, 0, 1, 13, 182])

gp: E = ellinit([1, 0, 1, 13, 182])

magma: E := EllipticCurve([1, 0, 1, 13, 182]);

oscar: E = EllipticCurve([1, 0, 1, 13, 182])

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

oscar: short_weierstrass_model(E)

## Mordell-Weil group structure

$$\Z/{3}\Z$$

magma: MordellWeilGroup(E);

## Torsion generators

$$\left(0, 13\right)$$

comment: Torsion subgroup

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

oscar: torsion_structure(E)

## Integral points

$$\left(0, 13\right)$$, $$\left(0, -14\right)$$

comment: Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

## Invariants

 Conductor: $$546$$ = $2 \cdot 3 \cdot 7 \cdot 13$ comment: Conductor  sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E);  oscar: conductor(E) Discriminant: $-14329224$ = $-1 \cdot 2^{3} \cdot 3^{9} \cdot 7 \cdot 13$ comment: Discriminant  sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E);  oscar: discriminant(E) j-invariant: $$\frac{270840023}{14329224}$$ = $2^{-3} \cdot 3^{-9} \cdot 7^{-1} \cdot 13^{-1} \cdot 647^{3}$ comment: j-invariant  sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E);  oscar: j_invariant(E) Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.052847046911833982505626248202\dots$ gp: ellheight(E)  magma: FaltingsHeight(E);  oscar: faltings_height(E) Stable Faltings height: $0.052847046911833982505626248202\dots$ magma: StableFaltingsHeight(E);  oscar: stable_faltings_height(E)

## BSD invariants

 Analytic rank: $0$ sage: E.analytic_rank()  gp: ellanalyticrank(E)  magma: AnalyticRank(E); Regulator: $1$ comment: Regulator  sage: E.regulator()  G = E.gen \\ if available matdet(ellheightmatrix(E,G))  magma: Regulator(E); Real period: $1.6909566491933105768230988183\dots$ comment: Real Period  sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Tamagawa product: $9$  = $1\cdot3^{2}\cdot1\cdot1$ comment: Tamagawa numbers  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E);  oscar: tamagawa_numbers(E) Torsion order: $3$ comment: Torsion order  sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E));  oscar: prod(torsion_structure(E)[1]) Analytic order of Ш: $1$ (exact) comment: Order of Sha  sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Special value: $L(E,1)$ ≈ $1.6909566491933105768230988183$ comment: Special L-value  r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: [r,L1r] = ellanalyticrank(E); L1r/r!  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

## BSD formula

$\displaystyle 1.690956649 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.690957 \cdot 1.000000 \cdot 9}{3^2} \approx 1.690956649$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)

E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;

Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();

omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();

assert r == ar; print("anayltic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))

/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */

E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;

sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);

reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);

assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);

## Modular invariants

$$q - q^{2} + q^{3} + q^{4} + 3 q^{5} - q^{6} + q^{7} - q^{8} + q^{9} - 3 q^{10} + 3 q^{11} + q^{12} + q^{13} - q^{14} + 3 q^{15} + q^{16} - 3 q^{17} - q^{18} - 7 q^{19} + O(q^{20})$$

comment: q-expansion of modular form

sage: E.q_eigenform(20)

\\ actual modular form, use for small N

[mf,F] = mffromell(E)

Ser(mfcoefs(mf,20),q)

\\ or just the series

Ser(ellan(E,20),q)*q

magma: ModularForm(E);

Modular degree: 216
comment: Modular degree

sage: E.modular_degree()

gp: ellmoddegree(E)

magma: ModularDegree(E);

$\Gamma_0(N)$-optimal: yes
Manin constant: 1
comment: Manin constant

magma: ManinConstant(E);

## Local data

This elliptic curve is semistable. There are 4 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_{3}$ Non-split multiplicative 1 1 3 3
$3$ $9$ $I_{9}$ Split multiplicative -1 1 9 9
$7$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$13$ $1$ $I_{1}$ Split multiplicative -1 1 1 1

comment: Local data

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]

## Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B.1.1 9.24.0.1

comment: mod p Galois image

sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

gens = [[1, 18, 0, 1], [3277, 18, 3285, 163], [1, 18, 10, 181], [10, 9, 81, 73], [1639, 18, 1647, 163], [1649, 3294, 5247, 1819], [1015, 18, 2889, 6205], [1, 0, 18, 1], [949, 18, 2241, 511], [6535, 18, 6534, 19]]

GL(2,Integers(6552)).subgroup(gens)

Gens := [[1, 18, 0, 1], [3277, 18, 3285, 163], [1, 18, 10, 181], [10, 9, 81, 73], [1639, 18, 1647, 163], [1649, 3294, 5247, 1819], [1015, 18, 2889, 6205], [1, 0, 18, 1], [949, 18, 2241, 511], [6535, 18, 6534, 19]];

sub<GL(2,Integers(6552))|Gens>;

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level $$6552 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13$$, index $144$, genus $3$, and generators

$\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3277 & 18 \\ 3285 & 163 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 10 & 181 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 1639 & 18 \\ 1647 & 163 \end{array}\right),\left(\begin{array}{rr} 1649 & 3294 \\ 5247 & 1819 \end{array}\right),\left(\begin{array}{rr} 1015 & 18 \\ 2889 & 6205 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 949 & 18 \\ 2241 & 511 \end{array}\right),\left(\begin{array}{rr} 6535 & 18 \\ 6534 & 19 \end{array}\right)$.

The torsion field $K:=\Q(E[6552])$ is a degree-$135862278$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6552\Z)$.

## $p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 7 13 nonsplit split split split 2 9 1 1 0 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

## Isogenies

gp: ellisomat(E)

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3 and 9.
Its isogeny class 546.d consists of 3 curves linked by isogenies of degrees dividing 9.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.2184.1 $$\Z/6\Z$$ Not in database $3$ 3.3.8281.2 $$\Z/9\Z$$ Not in database $6$ 6.0.10417365504.1 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database $6$ 6.0.1851523947.3 $$\Z/3\Z \oplus \Z/3\Z$$ Not in database $6$ 6.0.223587.1 $$\Z/9\Z$$ Not in database $9$ 9.3.714370433159545344.1 $$\Z/18\Z$$ Not in database $12$ deg 12 $$\Z/12\Z$$ Not in database $18$ 18.0.6347285018761982937208599123.1 $$\Z/3\Z \oplus \Z/9\Z$$ Not in database $18$ 18.0.13778778125859023933413630761386115072.3 $$\Z/3\Z \oplus \Z/6\Z$$ Not in database $18$ 18.0.200930163501792205662554161152.1 $$\Z/18\Z$$ Not in database $18$ 18.0.641980830440023643105607884434501873434624.2 $$\Z/2\Z \oplus \Z/18\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.