Properties

Label 5445.h
Number of curves $1$
Conductor $5445$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("h1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 5445.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5445.h1 5445f1 \([1, -1, 0, -105, -874]\) \(-1459161/3125\) \(-275653125\) \([]\) \(1680\) \(0.30847\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 5445.h1 has rank \(1\).

Complex multiplication

The elliptic curves in class 5445.h do not have complex multiplication.

Modular form 5445.2.a.h

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{5} - 3q^{7} - 3q^{8} - q^{10} + 4q^{13} - 3q^{14} - q^{16} + 4q^{19} + O(q^{20})\)  Toggle raw display