Properties

Label 5415h
Number of curves 22
Conductor 54155415
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5415h have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
331+T1 + T
551+T1 + T
191911
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1T+2T2 1 - T + 2 T^{2} 1.2.ab
77 1+2T+7T2 1 + 2 T + 7 T^{2} 1.7.c
1111 1+6T+11T2 1 + 6 T + 11 T^{2} 1.11.g
1313 1+13T2 1 + 13 T^{2} 1.13.a
1717 1+6T+17T2 1 + 6 T + 17 T^{2} 1.17.g
2323 1+8T+23T2 1 + 8 T + 23 T^{2} 1.23.i
2929 1+4T+29T2 1 + 4 T + 29 T^{2} 1.29.e
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5415h do not have complex multiplication.

Modular form 5415.2.a.h

Copy content sage:E.q_eigenform(10)
 
qq2+q3q4q5q62q7+3q8+q9+q102q11q12+4q13+2q14q15q16+2q17q18+O(q20)q - q^{2} + q^{3} - q^{4} - q^{5} - q^{6} - 2 q^{7} + 3 q^{8} + q^{9} + q^{10} - 2 q^{11} - q^{12} + 4 q^{13} + 2 q^{14} - q^{15} - q^{16} + 2 q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 5415h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5415.c2 5415h1 [1,0,0,534,121371][1, 0, 0, 534, 121371] 357911/135375357911/135375 6368836140375-6368836140375 [2][2] 86408640 1.13601.1360 Γ0(N)\Gamma_0(N)-optimal
5415.c1 5415h2 [1,0,0,33761,2323110][1, 0, 0, -33761, 2323110] 90458382169/267187590458382169/2671875 125700713296875125700713296875 [2][2] 1728017280 1.48261.4826