sage:E = EllipticCurve("h1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 5415h have
rank 1.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 3 | 1+T |
| 5 | 1+T |
| 19 | 1 |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 2 |
1−T+2T2 |
1.2.ab
|
| 7 |
1+2T+7T2 |
1.7.c
|
| 11 |
1+6T+11T2 |
1.11.g
|
| 13 |
1+13T2 |
1.13.a
|
| 17 |
1+6T+17T2 |
1.17.g
|
| 23 |
1+8T+23T2 |
1.23.i
|
| 29 |
1+4T+29T2 |
1.29.e
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
The elliptic curves in class 5415h do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.
Elliptic curves in class 5415h
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
| 5415.c2 |
5415h1 |
[1,0,0,534,121371] |
357911/135375 |
−6368836140375 |
[2] |
8640 |
1.1360
|
Γ0(N)-optimal |
| 5415.c1 |
5415h2 |
[1,0,0,−33761,2323110] |
90458382169/2671875 |
125700713296875 |
[2] |
17280 |
1.4826
|
|