Properties

Label 54150bo
Number of curves $2$
Conductor $54150$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("54150.br1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 54150bo

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
54150.br2 54150bo1 [1, 1, 1, -2039838, 1153731531] [2] 1751040 \(\Gamma_0(N)\)-optimal
54150.br1 54150bo2 [1, 1, 1, -32905338, 72638229531] [2] 3502080  

Rank

sage: E.rank()
 

The elliptic curves in class 54150bo have rank \(0\).

Modular form 54150.2.a.br

sage: E.q_eigenform(10)
 
\( q + q^{2} - q^{3} + q^{4} - q^{6} - 2q^{7} + q^{8} + q^{9} - q^{12} - 2q^{13} - 2q^{14} + q^{16} + 6q^{17} + q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.