# Properties

 Label 54150.cq Number of curves $2$ Conductor $54150$ CM no Rank $1$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("54150.cq1")

sage: E.isogeny_class()

## Elliptic curves in class 54150.cq

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
54150.cq1 54150cj2 [1, 0, 0, -232673713, -1365897858583]  9338880
54150.cq2 54150cj1 [1, 0, 0, -13185713, -25484642583]  4669440 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 54150.cq have rank $$1$$.

## Modular form 54150.2.a.cq

sage: E.q_eigenform(10)

$$q + q^{2} + q^{3} + q^{4} + q^{6} + 2q^{7} + q^{8} + q^{9} + q^{12} - 2q^{13} + 2q^{14} + q^{16} + 2q^{17} + q^{18} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 