Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5408.a1 |
5408g1 |
5408.a |
5408g |
$1$ |
$1$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{9} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3$ |
3.3.0.1 |
3Nn |
$312$ |
$12$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$22464$ |
$1.250874$ |
$-74088$ |
$0.92990$ |
$4.71855$ |
$[0, 0, 0, -15379, -742586]$ |
\(y^2=x^3-15379x-742586\) |
3.3.0.a.1, 24.6.0.m.1, 104.2.0.?, 156.6.0.?, 312.12.1.? |
$[]$ |
5408.b1 |
5408m1 |
5408.b |
5408m |
$1$ |
$1$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3$ |
3.3.0.1 |
3Nn |
$312$ |
$12$ |
$1$ |
$0.943302495$ |
$1$ |
|
$4$ |
$1728$ |
$-0.031601$ |
$-74088$ |
$0.92990$ |
$2.92814$ |
$[0, 0, 0, -91, -338]$ |
\(y^2=x^3-91x-338\) |
3.3.0.a.1, 24.6.0.m.1, 104.2.0.?, 156.6.0.?, 312.12.1.? |
$[(13, 26)]$ |
5408.c1 |
5408j1 |
5408.c |
5408j |
$1$ |
$1$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{12} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
4.2.0.1 |
|
$104$ |
$4$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17472$ |
$1.573086$ |
$-10816$ |
$0.83745$ |
$5.04957$ |
$[0, 1, 0, -38081, 3067663]$ |
\(y^2=x^3+x^2-38081x+3067663\) |
4.2.0.a.1, 104.4.0.? |
$[]$ |
5408.d1 |
5408d1 |
5408.d |
5408d |
$1$ |
$1$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{12} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.4.0.2 |
|
$8$ |
$4$ |
$0$ |
$0.125541278$ |
$1$ |
|
$8$ |
$1344$ |
$0.290612$ |
$-10816$ |
$0.83745$ |
$3.25916$ |
$[0, 1, 0, -225, 1327]$ |
\(y^2=x^3+x^2-225x+1327\) |
4.2.0.a.1, 8.4.0-4.a.1.1 |
$[(-9, 52)]$ |
5408.e1 |
5408b1 |
5408.e |
5408b |
$1$ |
$1$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{9} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$0.871651939$ |
$1$ |
|
$4$ |
$2688$ |
$0.695062$ |
$-8/13$ |
$0.95359$ |
$3.68187$ |
$[0, -1, 0, -56, 8644]$ |
\(y^2=x^3-x^2-56x+8644\) |
104.2.0.? |
$[(48, 338)]$ |
5408.f1 |
5408k1 |
5408.f |
5408k |
$2$ |
$2$ |
\( 2^{5} \cdot 13^{2} \) |
\( 2^{6} \cdot 13^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-4$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$3.583020519$ |
$1$ |
|
$3$ |
$6240$ |
$0.959753$ |
$1728$ |
|
$4.03672$ |
$[0, 0, 0, -2197, 0]$ |
\(y^2=x^3-2197x\) |
|
$[(-9, 138)]$ |
5408.f2 |
5408k2 |
5408.f |
5408k |
$2$ |
$2$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{12} \cdot 13^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-4$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$7.166041039$ |
$1$ |
|
$1$ |
$12480$ |
$1.306326$ |
$1728$ |
|
$4.52055$ |
$[0, 0, 0, 8788, 0]$ |
\(y^2=x^3+8788x\) |
|
$[(2116/3, 104788/3)]$ |
5408.g1 |
5408a2 |
5408.g |
5408a |
$4$ |
$4$ |
\( 2^{5} \cdot 13^{2} \) |
\( 2^{9} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-16$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$11.66502347$ |
$1$ |
|
$1$ |
$1920$ |
$0.665089$ |
$287496$ |
$1.17246$ |
$3.97841$ |
$[0, 0, 0, -1859, -30758]$ |
\(y^2=x^3-1859x-30758\) |
|
$[(-224246/95, 8254758/95)]$ |
5408.g2 |
5408a3 |
5408.g |
5408a |
$4$ |
$4$ |
\( 2^{5} \cdot 13^{2} \) |
\( 2^{9} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-16$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$2.916255868$ |
$1$ |
|
$3$ |
$1920$ |
$0.665089$ |
$287496$ |
$1.17246$ |
$3.97841$ |
$[0, 0, 0, -1859, 30758]$ |
\(y^2=x^3-1859x+30758\) |
|
$[(1, 170)]$ |
5408.g3 |
5408a1 |
5408.g |
5408a |
$4$ |
$4$ |
\( 2^{5} \cdot 13^{2} \) |
\( 2^{6} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-4$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.143 |
2Cs |
|
|
|
$5.832511736$ |
$1$ |
|
$3$ |
$960$ |
$0.318515$ |
$1728$ |
|
$3.14151$ |
$[0, 0, 0, -169, 0]$ |
\(y^2=x^3-169x\) |
|
$[(-36/5, 1938/5)]$ |
5408.g4 |
5408a4 |
5408.g |
5408a |
$4$ |
$4$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{12} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-4$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.178 |
2B |
|
|
|
$2.916255868$ |
$1$ |
|
$3$ |
$1920$ |
$0.665089$ |
$1728$ |
|
$3.62535$ |
$[0, 0, 0, 676, 0]$ |
\(y^2=x^3+676x\) |
|
$[(468, 10140)]$ |
5408.h1 |
5408e1 |
5408.h |
5408e |
$2$ |
$2$ |
\( 2^{5} \cdot 13^{2} \) |
\( 2^{6} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-4$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$1$ |
$480$ |
$-0.322722$ |
$1728$ |
|
$2.24631$ |
$[0, 0, 0, -13, 0]$ |
\(y^2=x^3-13x\) |
|
$[]$ |
5408.h2 |
5408e2 |
5408.h |
5408e |
$2$ |
$2$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{12} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-4$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$1$ |
$960$ |
$0.023852$ |
$1728$ |
|
$2.73015$ |
$[0, 0, 0, 52, 0]$ |
\(y^2=x^3+52x\) |
|
$[]$ |
5408.i1 |
5408h1 |
5408.i |
5408h |
$1$ |
$1$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{9} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2688$ |
$0.695062$ |
$-8/13$ |
$0.95359$ |
$3.68187$ |
$[0, 1, 0, -56, -8644]$ |
\(y^2=x^3+x^2-56x-8644\) |
104.2.0.? |
$[]$ |
5408.j1 |
5408c1 |
5408.j |
5408c |
$1$ |
$1$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{12} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
4.2.0.1 |
|
$104$ |
$4$ |
$0$ |
$7.249855560$ |
$1$ |
|
$0$ |
$17472$ |
$1.573086$ |
$-10816$ |
$0.83745$ |
$5.04957$ |
$[0, -1, 0, -38081, -3067663]$ |
\(y^2=x^3-x^2-38081x-3067663\) |
4.2.0.a.1, 104.4.0.? |
$[(3709/3, 192932/3)]$ |
5408.k1 |
5408i1 |
5408.k |
5408i |
$1$ |
$1$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{12} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.4.0.2 |
|
$8$ |
$4$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1344$ |
$0.290612$ |
$-10816$ |
$0.83745$ |
$3.25916$ |
$[0, -1, 0, -225, -1327]$ |
\(y^2=x^3-x^2-225x-1327\) |
4.2.0.a.1, 8.4.0-4.a.1.1 |
$[]$ |
5408.l1 |
5408l1 |
5408.l |
5408l |
$1$ |
$1$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{9} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3$ |
3.3.0.1 |
3Nn |
$312$ |
$12$ |
$1$ |
$3.547654043$ |
$1$ |
|
$0$ |
$22464$ |
$1.250874$ |
$-74088$ |
$0.92990$ |
$4.71855$ |
$[0, 0, 0, -15379, 742586]$ |
\(y^2=x^3-15379x+742586\) |
3.3.0.a.1, 24.6.0.m.1, 104.2.0.?, 156.6.0.?, 312.12.1.? |
$[(1690/3, 57122/3)]$ |
5408.m1 |
5408f1 |
5408.m |
5408f |
$1$ |
$1$ |
\( 2^{5} \cdot 13^{2} \) |
\( - 2^{9} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3$ |
3.3.0.1 |
3Nn |
$312$ |
$12$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$-0.031601$ |
$-74088$ |
$0.92990$ |
$2.92814$ |
$[0, 0, 0, -91, 338]$ |
\(y^2=x^3-91x+338\) |
3.3.0.a.1, 24.6.0.m.1, 104.2.0.?, 156.6.0.?, 312.12.1.? |
$[]$ |