Properties

Label 5400.e
Number of curves $1$
Conductor $5400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 5400.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5400.e1 5400o1 \([0, 0, 0, -675, 114750]\) \(-6\) \(-5668704000000\) \([]\) \(10080\) \(1.1265\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 5400.e1 has rank \(0\).

Complex multiplication

The elliptic curves in class 5400.e do not have complex multiplication.

Modular form 5400.2.a.e

sage: E.q_eigenform(10)
 
\(q - 3 q^{7} - 5 q^{11} - 4 q^{13} - 8 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display