Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 540.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
540.c1 | 540a1 | \([0, 0, 0, -33, 73]\) | \(-9199872/5\) | \(-2160\) | \([3]\) | \(36\) | \(-0.41148\) | \(\Gamma_0(N)\)-optimal |
540.c2 | 540a2 | \([0, 0, 0, 27, 297]\) | \(6912/125\) | \(-39366000\) | \([]\) | \(108\) | \(0.13782\) |
Rank
sage: E.rank()
The elliptic curves in class 540.c have rank \(0\).
Complex multiplication
The elliptic curves in class 540.c do not have complex multiplication.Modular form 540.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.