Minimal Weierstrass equation
\(y^2+xy=x^3-x^2-123x-667\)
Mordell-Weil group structure
trivial
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 54 \) | = | \(2 \cdot 3^{3}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-90699264 \) | = | \(-1 \cdot 2^{9} \cdot 3^{11} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{1167051}{512} \) | = | \(-1 \cdot 2^{-9} \cdot 3 \cdot 73^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(0\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.70157482532401024962405804753\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 1 \) = \( 1\cdot1 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 18 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 0.70157482532401024962405804752704343244 \)
Local data
This elliptic curve is semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(1\) | \(I_{9}\) | Non-split multiplicative | 1 | 1 | 9 | 9 |
\(3\) | \(1\) | \(II^{*}\) | Additive | -1 | 3 | 11 | 0 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(3\) | B.1.2 |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 |
---|---|---|
Reduction type | nonsplit | add |
$\lambda$-invariant(s) | 1 | - |
$\mu$-invariant(s) | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3 and 9.
Its isogeny class 54.a
consists of 3 curves linked by isogenies of
degrees dividing 9.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/9\Z\) | 2.0.3.1-324.1-a4 |
$3$ | 3.1.216.1 | \(\Z/2\Z\) | Not in database |
$3$ | 3.1.243.1 | \(\Z/3\Z\) | Not in database |
$6$ | 6.0.1119744.1 | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$6$ | 6.0.177147.2 | \(\Z/3\Z \times \Z/9\Z\) | Not in database |
$6$ | 6.0.139968.1 | \(\Z/18\Z\) | Not in database |
$9$ | 9.1.198359290368.1 | \(\Z/6\Z\) | Not in database |
$12$ | 12.2.1925877696823296.2 | \(\Z/4\Z\) | Not in database |
$12$ | 12.0.1253826625536.1 | \(\Z/2\Z \times \Z/18\Z\) | Not in database |
$18$ | 18.0.16599265906765726789632.7 | \(\Z/27\Z\) | Not in database |
$18$ | 18.0.118039224225889612726272.3 | \(\Z/3\Z \times \Z/18\Z\) | Not in database |
$18$ | 18.0.60436082803655481715851264.2 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive.