Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3+x^2-506x+7774\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3+x^2z-506xz^2+7774z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-656208x+370588176\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(44, 269)$ | $0.11113614714198801966424322310$ | $\infty$ |
Integral points
\( \left(-22, 93\right) \), \( \left(-22, -94\right) \), \( \left(11, 60\right) \), \( \left(11, -61\right) \), \( \left(44, 269\right) \), \( \left(44, -270\right) \)
Invariants
| Conductor: | $N$ | = | \( 539 \) | = | $7^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-18947489099$ | = | $-1 \cdot 7^{6} \cdot 11^{5} $ |
|
| j-invariant: | $j$ | = | \( -\frac{122023936}{161051} \) | = | $-1 \cdot 2^{12} \cdot 11^{-5} \cdot 31^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.66494523340925358786366211026$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.30800984111840306468901426146$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.012998630378065$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.005510262667855$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.11113614714198801966424322310$ |
|
| Real period: | $\Omega$ | ≈ | $1.1027617076765241103117353267$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 10 $ = $ 2\cdot5 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $1.2255668740688816300719797533 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.225566874 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.102762 \cdot 0.111136 \cdot 10}{1^2} \\ & \approx 1.225566874\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 360 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $11$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $5$ | 5Cs.4.1 | 5.60.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3850 = 2 \cdot 5^{2} \cdot 7 \cdot 11 \), index $1200$, genus $37$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 50 & 1 \end{array}\right),\left(\begin{array}{rr} 16 & 35 \\ 1765 & 11 \end{array}\right),\left(\begin{array}{rr} 3801 & 50 \\ 3800 & 51 \end{array}\right),\left(\begin{array}{rr} 1 & 50 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2031 & 2800 \\ 3535 & 1121 \end{array}\right),\left(\begin{array}{rr} 1751 & 2800 \\ 2954 & 827 \end{array}\right),\left(\begin{array}{rr} 1649 & 0 \\ 0 & 3849 \end{array}\right),\left(\begin{array}{rr} 1 & 50 \\ 10 & 501 \end{array}\right)$.
The torsion field $K:=\Q(E[3850])$ is a degree-$39916800000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3850\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $5$ | good | $2$ | \( 49 = 7^{2} \) |
| $7$ | additive | $26$ | \( 11 \) |
| $11$ | split multiplicative | $12$ | \( 49 = 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 539d
consists of 3 curves linked by isogenies of
degrees dividing 25.
Twists
The minimal quadratic twist of this elliptic curve is 11a1, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/5\Z\) | 2.0.7.1-121.2-a2 |
| $3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
| $4$ | 4.4.6125.1 | \(\Z/5\Z\) | not in database |
| $6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.664048.1 | \(\Z/10\Z\) | not in database |
| $8$ | 8.2.76879700667.3 | \(\Z/3\Z\) | not in database |
| $8$ | 8.0.37515625.1 | \(\Z/5\Z \oplus \Z/5\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/10\Z\) | not in database |
| $12$ | 12.0.53356129302784.1 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
| $16$ | deg 16 | \(\Z/15\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | ord | ord | add | split | ord | ord | ss | ord | ss | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 4,5 | 1 | 1 | - | 2 | 1 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0,0 | 0 | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.