Properties

Label 53900d
Number of curves $1$
Conductor $53900$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 53900d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
53900.c1 53900d1 \([0, 1, 0, -8881658, 10707874813]\) \(-129084391106508544/7863818359375\) \(-4720256970214843750000\) \([]\) \(2471040\) \(2.9136\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 53900d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 53900d do not have complex multiplication.

Modular form 53900.2.a.d

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{9} - q^{11} + q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display