Show commands for:
SageMath
sage: E = EllipticCurve("c1")
sage: E.isogeny_class()
Elliptic curves in class 53816c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
53816.d4 | 53816c1 | [0, 0, 0, 961, -59582] | [2] | 57600 | \(\Gamma_0(N)\)-optimal |
53816.d3 | 53816c2 | [0, 0, 0, -18259, -893730] | [2, 2] | 115200 | |
53816.d2 | 53816c3 | [0, 0, 0, -56699, 4111158] | [2] | 230400 | |
53816.d1 | 53816c4 | [0, 0, 0, -287339, -59284090] | [2] | 230400 |
Rank
sage: E.rank()
The elliptic curves in class 53816c have rank \(1\).
Complex multiplication
The elliptic curves in class 53816c do not have complex multiplication.Modular form 53816.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.