Show commands for:
SageMath
sage: E = EllipticCurve("r1")
sage: E.isogeny_class()
Elliptic curves in class 53361.r
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
53361.r1 | 53361bm2 | [1, -1, 1, -1601942, 780829382] | [] | 570240 | |
53361.r2 | 53361bm1 | [1, -1, 1, -1112, -55492] | [] | 51840 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 53361.r have rank \(2\).
Complex multiplication
The elliptic curves in class 53361.r do not have complex multiplication.Modular form 53361.2.a.r
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.