# Properties

 Label 53361.p Number of curves 6 Conductor 53361 CM no Rank 0 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("53361.p1")

sage: E.isogeny_class()

## Elliptic curves in class 53361.p

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
53361.p1 53361bo6 [1, -1, 1, -41836136, 104164339920] [2] 1966080
53361.p2 53361bo4 [1, -1, 1, -2615801, 1626696096] [2, 2] 983040
53361.p3 53361bo3 [1, -1, 1, -2082191, -1148929680] [2] 983040
53361.p4 53361bo5 [1, -1, 1, -1815386, 2640341652] [2] 1966080
53361.p5 53361bo2 [1, -1, 1, -214556, 8256966] [2, 2] 491520
53361.p6 53361bo1 [1, -1, 1, 52249, 999870] [2] 245760 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 53361.p have rank $$0$$.

## Modular form 53361.2.a.p

sage: E.q_eigenform(10)

$$q - q^{2} - q^{4} - 2q^{5} + 3q^{8} + 2q^{10} - 2q^{13} - q^{16} + 6q^{17} + 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrrrr} 1 & 2 & 8 & 4 & 4 & 8 \\ 2 & 1 & 4 & 2 & 2 & 4 \\ 8 & 4 & 1 & 8 & 2 & 4 \\ 4 & 2 & 8 & 1 & 4 & 8 \\ 4 & 2 & 2 & 4 & 1 & 2 \\ 8 & 4 & 4 & 8 & 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.