Properties

Label 53.a
Number of curves $1$
Conductor $53$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 53.a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(53\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 53.a do not have complex multiplication.

Modular form 53.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 3 q^{3} - q^{4} + 3 q^{6} - 4 q^{7} + 3 q^{8} + 6 q^{9} + 3 q^{12} - 3 q^{13} + 4 q^{14} - q^{16} - 3 q^{17} - 6 q^{18} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 53.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
53.a1 53a1 \([1, -1, 1, 0, 0]\) \(3375/53\) \(-53\) \([]\) \(2\) \(-0.98855\) \(\Gamma_0(N)\)-optimal