Properties

Label 5292.f
Number of curves $2$
Conductor $5292$
CM \(\Q(\sqrt{-3}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 5292.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
5292.f1 5292b1 \([0, 0, 0, 0, -67228]\) \(0\) \(-1952468921088\) \([]\) \(4536\) \(1.0372\) \(\Gamma_0(N)\)-optimal \(-3\)
5292.f2 5292b2 \([0, 0, 0, 0, 1815156]\) \(0\) \(-1423349843473152\) \([]\) \(13608\) \(1.5865\)   \(-3\)

Rank

sage: E.rank()
 

The elliptic curves in class 5292.f have rank \(1\).

Complex multiplication

Each elliptic curve in class 5292.f has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).

Modular form 5292.2.a.f

sage: E.q_eigenform(10)
 
\(q - 2q^{13} + q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.