Properties

Label 5265.m
Number of curves $1$
Conductor $5265$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("m1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 5265.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5265.m1 5265o1 \([1, -1, 0, -24, 53]\) \(-2146689/65\) \(-47385\) \([]\) \(360\) \(-0.32510\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 5265.m1 has rank \(1\).

Complex multiplication

The elliptic curves in class 5265.m do not have complex multiplication.

Modular form 5265.2.a.m

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + q^{5} + 2 q^{7} - 3 q^{8} + q^{10} + q^{11} - q^{13} + 2 q^{14} - q^{16} - 2 q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display