Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
5265.a1 |
5265d1 |
5265.a |
5265d |
$1$ |
$1$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{4} \cdot 5^{4} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.554974443$ |
$1$ |
|
$4$ |
$4896$ |
$0.584921$ |
$15614290980864/1373125$ |
$[0, 0, 1, -2253, 41158]$ |
\(y^2+y=x^3-2253x+41158\) |
5265.b1 |
5265g1 |
5265.b |
5265g |
$1$ |
$1$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{4} \cdot 5^{7} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$171360$ |
$2.415615$ |
$32553894958643707121664/10770194675703125$ |
$[0, 0, 1, -2878203, -1878910392]$ |
\(y^2+y=x^3-2878203x-1878910392\) |
5265.c1 |
5265h1 |
5265.c |
5265h |
$1$ |
$1$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{6} \cdot 5^{5} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.056862474$ |
$1$ |
|
$34$ |
$4320$ |
$0.345987$ |
$1345572864/528125$ |
$[0, 0, 1, -207, 650]$ |
\(y^2+y=x^3-207x+650\) |
5265.d1 |
5265a1 |
5265.d |
5265a |
$1$ |
$1$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( - 3^{12} \cdot 5 \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.187277759$ |
$1$ |
|
$4$ |
$3456$ |
$0.767481$ |
$-2146689/142805$ |
$[1, -1, 1, -218, 13366]$ |
\(y^2+xy+y=x^3-x^2-218x+13366\) |
5265.e1 |
5265b1 |
5265.e |
5265b |
$1$ |
$1$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( - 3^{12} \cdot 5 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3.835392433$ |
$1$ |
|
$2$ |
$1080$ |
$0.224203$ |
$-2146689/65$ |
$[1, -1, 1, -218, -1214]$ |
\(y^2+xy+y=x^3-x^2-218x-1214\) |
5265.f1 |
5265k1 |
5265.f |
5265k |
$1$ |
$1$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( - 3^{10} \cdot 5^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.175509063$ |
$1$ |
|
$6$ |
$1728$ |
$0.344619$ |
$-9/8125$ |
$[1, -1, 1, -2, 1054]$ |
\(y^2+xy+y=x^3-x^2-2x+1054\) |
5265.g1 |
5265m2 |
5265.g |
5265m |
$2$ |
$3$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{10} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1.850887809$ |
$1$ |
|
$0$ |
$3888$ |
$0.769206$ |
$30618648576/203125$ |
$[0, 0, 1, -2538, -48931]$ |
\(y^2+y=x^3-2538x-48931\) |
5265.g2 |
5265m1 |
5265.g |
5265m |
$2$ |
$3$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{6} \cdot 5^{2} \cdot 13^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$0.616962603$ |
$1$ |
|
$10$ |
$1296$ |
$0.219899$ |
$1177583616/54925$ |
$[0, 0, 1, -198, 1028]$ |
\(y^2+y=x^3-198x+1028\) |
5265.h1 |
5265e2 |
5265.h |
5265e |
$2$ |
$3$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{10} \cdot 5^{3} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$7776$ |
$1.222286$ |
$439228746694656/21125$ |
$[0, 0, 1, -61668, -5894377]$ |
\(y^2+y=x^3-61668x-5894377\) |
5265.h2 |
5265e1 |
5265.h |
5265e |
$2$ |
$3$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{6} \cdot 5 \cdot 13^{6} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$2592$ |
$0.672979$ |
$86116663296/24134045$ |
$[0, 0, 1, -828, -6586]$ |
\(y^2+y=x^3-828x-6586\) |
5265.i1 |
5265j2 |
5265.i |
5265j |
$2$ |
$3$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{12} \cdot 5^{2} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$0.665351444$ |
$1$ |
|
$4$ |
$3888$ |
$0.769206$ |
$1177583616/54925$ |
$[0, 0, 1, -1782, -27763]$ |
\(y^2+y=x^3-1782x-27763\) |
5265.i2 |
5265j1 |
5265.i |
5265j |
$2$ |
$3$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{4} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1.996054332$ |
$1$ |
|
$4$ |
$1296$ |
$0.219899$ |
$30618648576/203125$ |
$[0, 0, 1, -282, 1812]$ |
\(y^2+y=x^3-282x+1812\) |
5265.j1 |
5265i2 |
5265.j |
5265i |
$2$ |
$3$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{12} \cdot 5 \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$0.887271526$ |
$1$ |
|
$4$ |
$7776$ |
$1.222286$ |
$86116663296/24134045$ |
$[0, 0, 1, -7452, 177815]$ |
\(y^2+y=x^3-7452x+177815\) |
5265.j2 |
5265i1 |
5265.j |
5265i |
$2$ |
$3$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{4} \cdot 5^{3} \cdot 13^{2} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$2.661814578$ |
$1$ |
|
$4$ |
$2592$ |
$0.672979$ |
$439228746694656/21125$ |
$[0, 0, 1, -6852, 218310]$ |
\(y^2+y=x^3-6852x+218310\) |
5265.k1 |
5265f1 |
5265.k |
5265f |
$1$ |
$1$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( - 3^{4} \cdot 5^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$576$ |
$-0.204687$ |
$-9/8125$ |
$[1, -1, 0, 0, -39]$ |
\(y^2+xy=x^3-x^2-39\) |
5265.l1 |
5265n1 |
5265.l |
5265n |
$1$ |
$1$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( - 3^{6} \cdot 5 \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.936270652$ |
$1$ |
|
$2$ |
$1152$ |
$0.218175$ |
$-2146689/142805$ |
$[1, -1, 0, -24, -487]$ |
\(y^2+xy=x^3-x^2-24x-487\) |
5265.m1 |
5265o1 |
5265.m |
5265o |
$1$ |
$1$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( - 3^{6} \cdot 5 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.478012061$ |
$1$ |
|
$2$ |
$360$ |
$-0.325103$ |
$-2146689/65$ |
$[1, -1, 0, -24, 53]$ |
\(y^2+xy=x^3-x^2-24x+53\) |
5265.n1 |
5265c1 |
5265.n |
5265c |
$1$ |
$1$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{12} \cdot 5^{5} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4.360304920$ |
$1$ |
|
$0$ |
$12960$ |
$0.895293$ |
$1345572864/528125$ |
$[0, 0, 1, -1863, -17557]$ |
\(y^2+y=x^3-1863x-17557\) |
5265.o1 |
5265l1 |
5265.o |
5265l |
$1$ |
$1$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{10} \cdot 5^{7} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.222963181$ |
$1$ |
|
$0$ |
$514080$ |
$2.964920$ |
$32553894958643707121664/10770194675703125$ |
$[0, 0, 1, -25903827, 50730580577]$ |
\(y^2+y=x^3-25903827x+50730580577\) |
5265.p1 |
5265p1 |
5265.p |
5265p |
$1$ |
$1$ |
\( 3^{4} \cdot 5 \cdot 13 \) |
\( 3^{10} \cdot 5^{4} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.546037838$ |
$1$ |
|
$0$ |
$14688$ |
$1.134228$ |
$15614290980864/1373125$ |
$[0, 0, 1, -20277, -1111273]$ |
\(y^2+y=x^3-20277x-1111273\) |