The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000
| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 5240.a1 |
5240e1 |
5240.a |
5240e |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 131 \) |
\( - 2^{11} \cdot 5 \cdot 131 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5240$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1680$ |
$-0.095024$ |
$-4293378/655$ |
$0.71323$ |
$2.70096$ |
$[0, 0, 0, -43, -122]$ |
\(y^2=x^3-43x-122\) |
5240.2.0.? |
$[ ]$ |
$1$ |
| 5240.b1 |
5240c1 |
5240.b |
5240c |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 131 \) |
\( - 2^{8} \cdot 5^{4} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$262$ |
$2$ |
$0$ |
$0.133848143$ |
$1$ |
|
$10$ |
$1408$ |
$0.094101$ |
$135834624/81875$ |
$0.83753$ |
$2.83418$ |
$[0, 0, 0, 68, -44]$ |
\(y^2=x^3+68x-44\) |
262.2.0.? |
$[(2, 10)]$ |
$1$ |
| 5240.c1 |
5240f1 |
5240.c |
5240f |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 131 \) |
\( - 2^{8} \cdot 5^{6} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$262$ |
$2$ |
$0$ |
$0.449824538$ |
$1$ |
|
$6$ |
$1536$ |
$0.364539$ |
$-1326109696/2046875$ |
$0.82330$ |
$3.25197$ |
$[0, -1, 0, -145, -1243]$ |
\(y^2=x^3-x^2-145x-1243\) |
262.2.0.? |
$[(19, 50)]$ |
$1$ |
| 5240.d1 |
5240d1 |
5240.d |
5240d |
$2$ |
$2$ |
\( 2^{3} \cdot 5 \cdot 131 \) |
\( 2^{4} \cdot 5^{5} \cdot 131^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2620$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3120$ |
$0.542696$ |
$6870610888704/53628125$ |
$0.92537$ |
$3.77517$ |
$[0, 0, 0, -998, 12053]$ |
\(y^2=x^3-998x+12053\) |
2.3.0.a.1, 10.6.0.a.1, 524.6.0.?, 2620.12.0.? |
$[ ]$ |
$1$ |
| 5240.d2 |
5240d2 |
5240.d |
5240d |
$2$ |
$2$ |
\( 2^{3} \cdot 5 \cdot 131 \) |
\( - 2^{8} \cdot 5^{10} \cdot 131 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2620$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6240$ |
$0.889270$ |
$-17432758224/1279296875$ |
$1.19864$ |
$3.96742$ |
$[0, 0, 0, -343, 27642]$ |
\(y^2=x^3-343x+27642\) |
2.3.0.a.1, 20.6.0.c.1, 262.6.0.?, 2620.12.0.? |
$[ ]$ |
$1$ |
| 5240.e1 |
5240b1 |
5240.e |
5240b |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 131 \) |
\( - 2^{4} \cdot 5 \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$0.820137654$ |
$1$ |
|
$2$ |
$320$ |
$-0.549610$ |
$-256/655$ |
$0.74283$ |
$1.95143$ |
$[0, -1, 0, 0, 5]$ |
\(y^2=x^3-x^2+5\) |
1310.2.0.? |
$[(2, 3)]$ |
$1$ |
| 5240.f1 |
5240a1 |
5240.f |
5240a |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 131 \) |
\( - 2^{8} \cdot 5^{2} \cdot 131^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$262$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6912$ |
$0.629749$ |
$-2198209536/56202275$ |
$0.92464$ |
$3.60421$ |
$[0, 0, 0, -172, -5836]$ |
\(y^2=x^3-172x-5836\) |
262.2.0.? |
$[ ]$ |
$1$ |
Download
displayed columns for
results