Properties

Label 5220.e
Number of curves $2$
Conductor $5220$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 5220.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5220.e1 5220l1 \([0, 0, 0, -288, 837]\) \(226492416/105125\) \(1226178000\) \([2]\) \(2304\) \(0.43849\) \(\Gamma_0(N)\)-optimal
5220.e2 5220l2 \([0, 0, 0, 1017, 6318]\) \(623331504/453125\) \(-84564000000\) \([2]\) \(4608\) \(0.78507\)  

Rank

sage: E.rank()
 

The elliptic curves in class 5220.e have rank \(0\).

Complex multiplication

The elliptic curves in class 5220.e do not have complex multiplication.

Modular form 5220.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{5} - 2 q^{7} + 4 q^{11} - 6 q^{13} + 4 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.