Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5220.a1 |
5220m1 |
5220.a |
5220m |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5^{2} \cdot 29 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$174$ |
$2$ |
$0$ |
$0.082493606$ |
$1$ |
|
$30$ |
$2688$ |
$0.235038$ |
$-192914176/2175$ |
$0.79677$ |
$3.32482$ |
$[0, 0, 0, -273, 1753]$ |
\(y^2=x^3-273x+1753\) |
174.2.0.? |
$[(-1, 45), (9, 5)]$ |
5220.b1 |
5220i1 |
5220.b |
5220i |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{4} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$174$ |
$2$ |
$0$ |
$1.156383348$ |
$1$ |
|
$2$ |
$3840$ |
$0.797692$ |
$-47659369216/4404375$ |
$0.87919$ |
$3.98350$ |
$[0, 0, 0, -1713, -29387]$ |
\(y^2=x^3-1713x-29387\) |
174.2.0.? |
$[(164, 2025)]$ |
5220.c1 |
5220g1 |
5220.c |
5220g |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5 \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$870$ |
$2$ |
$0$ |
$0.166639136$ |
$1$ |
|
$8$ |
$960$ |
$0.201076$ |
$-65536/435$ |
$0.82245$ |
$3.00815$ |
$[0, 0, 0, -48, 452]$ |
\(y^2=x^3-48x+452\) |
870.2.0.? |
$[(4, 18)]$ |
5220.d1 |
5220b1 |
5220.d |
5220b |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{3} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$870$ |
$2$ |
$0$ |
$3.907429134$ |
$1$ |
|
$2$ |
$1440$ |
$0.393965$ |
$-11203633152/3625$ |
$0.97881$ |
$3.73600$ |
$[0, 0, 0, -888, -10188]$ |
\(y^2=x^3-888x-10188\) |
870.2.0.? |
$[(69, 507)]$ |
5220.e1 |
5220l1 |
5220.e |
5220l |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{3} \cdot 29^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2304$ |
$0.438494$ |
$226492416/105125$ |
$1.15496$ |
$3.34131$ |
$[0, 0, 0, -288, 837]$ |
\(y^2=x^3-288x+837\) |
2.3.0.a.1, 10.6.0.a.1, 116.6.0.?, 580.12.0.? |
$[ ]$ |
5220.e2 |
5220l2 |
5220.e |
5220l |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{6} \cdot 29 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4608$ |
$0.785068$ |
$623331504/453125$ |
$1.02485$ |
$3.78347$ |
$[0, 0, 0, 1017, 6318]$ |
\(y^2=x^3+1017x+6318\) |
2.3.0.a.1, 20.6.0.c.1, 116.6.0.?, 580.12.0.? |
$[ ]$ |
5220.f1 |
5220a2 |
5220.f |
5220a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{6} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$174$ |
$16$ |
$0$ |
$2.310185007$ |
$1$ |
|
$0$ |
$3456$ |
$0.853263$ |
$-1419579648/453125$ |
$0.83797$ |
$3.99205$ |
$[0, 0, 0, -1593, -30483]$ |
\(y^2=x^3-1593x-30483\) |
3.8.0-3.a.1.1, 174.16.0.? |
$[(489/2, 10125/2)]$ |
5220.f2 |
5220a1 |
5220.f |
5220a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 29^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$174$ |
$16$ |
$0$ |
$0.770061669$ |
$1$ |
|
$8$ |
$1152$ |
$0.303957$ |
$813189888/609725$ |
$0.98400$ |
$3.10562$ |
$[0, 0, 0, 147, 373]$ |
\(y^2=x^3+147x+373\) |
3.8.0-3.a.1.2, 174.16.0.? |
$[(-1, 15)]$ |
5220.g1 |
5220k1 |
5220.g |
5220k |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( 2^{4} \cdot 3^{10} \cdot 5^{5} \cdot 29^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$30720$ |
$1.851295$ |
$4150455958484156416/212878125$ |
$1.06098$ |
$6.10192$ |
$[0, 0, 0, -759288, 254658337]$ |
\(y^2=x^3-759288x+254658337\) |
2.3.0.a.1, 10.6.0.a.1, 116.6.0.?, 580.12.0.? |
$[ ]$ |
5220.g2 |
5220k2 |
5220.g |
5220k |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{8} \cdot 3^{14} \cdot 5^{10} \cdot 29 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$61440$ |
$2.197868$ |
$-258068272529292496/1858095703125$ |
$0.98568$ |
$6.10277$ |
$[0, 0, 0, -757983, 255577318]$ |
\(y^2=x^3-757983x+255577318\) |
2.3.0.a.1, 20.6.0.c.1, 116.6.0.?, 580.12.0.? |
$[ ]$ |
5220.h1 |
5220j1 |
5220.h |
5220j |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( 2^{4} \cdot 3^{10} \cdot 5 \cdot 29^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3072$ |
$0.625067$ |
$13608288256/340605$ |
$0.95001$ |
$3.81977$ |
$[0, 0, 0, -1128, -14263]$ |
\(y^2=x^3-1128x-14263\) |
2.3.0.a.1, 10.6.0.a.1, 116.6.0.?, 580.12.0.? |
$[ ]$ |
5220.h2 |
5220j2 |
5220.h |
5220j |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{8} \cdot 3^{14} \cdot 5^{2} \cdot 29 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6144$ |
$0.971641$ |
$3286064/4756725$ |
$0.96085$ |
$4.08472$ |
$[0, 0, 0, 177, -45322]$ |
\(y^2=x^3+177x-45322\) |
2.3.0.a.1, 20.6.0.c.1, 116.6.0.?, 580.12.0.? |
$[ ]$ |
5220.i1 |
5220h1 |
5220.i |
5220h |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{25} \cdot 5^{6} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$174$ |
$2$ |
$0$ |
$4.077175493$ |
$1$ |
|
$2$ |
$109440$ |
$2.438362$ |
$-74881286942075067136/526649727234375$ |
$1.01546$ |
$6.44126$ |
$[0, 0, 0, -1991433, 1088227757]$ |
\(y^2=x^3-1991433x+1088227757\) |
174.2.0.? |
$[(956, 7625)]$ |
5220.j1 |
5220c1 |
5220.j |
5220c |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{2} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$174$ |
$2$ |
$0$ |
$0.238261198$ |
$1$ |
|
$6$ |
$5760$ |
$1.016916$ |
$-5364759575808/725$ |
$0.97910$ |
$4.90301$ |
$[0, 0, 0, -24813, 1504413]$ |
\(y^2=x^3-24813x+1504413\) |
174.2.0.? |
$[(99, 135)]$ |
5220.k1 |
5220e1 |
5220.k |
5220e |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{8} \cdot 3^{9} \cdot 5^{3} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$870$ |
$2$ |
$0$ |
$0.178703988$ |
$1$ |
|
$8$ |
$4320$ |
$0.943271$ |
$-11203633152/3625$ |
$0.97881$ |
$4.50603$ |
$[0, 0, 0, -7992, 275076]$ |
\(y^2=x^3-7992x+275076\) |
870.2.0.? |
$[(72, 270)]$ |
5220.l1 |
5220p2 |
5220.l |
5220p |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{6} \cdot 29^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$174$ |
$16$ |
$0$ |
$0.338402501$ |
$1$ |
|
$16$ |
$10368$ |
$1.383238$ |
$-795070868224/10289109375$ |
$0.96855$ |
$4.66307$ |
$[0, 0, 0, -4377, 538729]$ |
\(y^2=x^3-4377x+538729\) |
3.8.0-3.a.1.2, 174.16.0.? |
$[(53, 675)]$ |
5220.l2 |
5220p1 |
5220.l |
5220p |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{15} \cdot 5^{2} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$174$ |
$16$ |
$0$ |
$1.015207505$ |
$1$ |
|
$2$ |
$3456$ |
$0.833931$ |
$1068359936/14270175$ |
$0.91051$ |
$3.88404$ |
$[0, 0, 0, 483, -19199]$ |
\(y^2=x^3+483x-19199\) |
3.8.0-3.a.1.1, 174.16.0.? |
$[(80, 729)]$ |
5220.m1 |
5220d1 |
5220.m |
5220d |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{6} \cdot 29 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$174$ |
$16$ |
$0$ |
$0.602945988$ |
$1$ |
|
$10$ |
$1152$ |
$0.303957$ |
$-1419579648/453125$ |
$0.83797$ |
$3.22202$ |
$[0, 0, 0, -177, 1129]$ |
\(y^2=x^3-177x+1129\) |
3.8.0-3.a.1.2, 174.16.0.? |
$[(8, 15)]$ |
5220.m2 |
5220d2 |
5220.m |
5220d |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{2} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$174$ |
$16$ |
$0$ |
$1.808837965$ |
$1$ |
|
$2$ |
$3456$ |
$0.853263$ |
$813189888/609725$ |
$0.98400$ |
$3.87565$ |
$[0, 0, 0, 1323, -10071]$ |
\(y^2=x^3+1323x-10071\) |
3.8.0-3.a.1.1, 174.16.0.? |
$[(48, 405)]$ |
5220.n1 |
5220n1 |
5220.n |
5220n |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{2} \cdot 29 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$768$ |
$0.044658$ |
$3538944/725$ |
$0.87494$ |
$2.85548$ |
$[0, 0, 0, -72, 189]$ |
\(y^2=x^3-72x+189\) |
2.3.0.a.1, 20.6.0.b.1, 58.6.0.a.1, 580.12.0.? |
$[ ]$ |
5220.n2 |
5220n2 |
5220.n |
5220n |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{8} \cdot 3^{6} \cdot 5 \cdot 29^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1536$ |
$0.391232$ |
$2122416/4205$ |
$0.84263$ |
$3.22305$ |
$[0, 0, 0, 153, 1134]$ |
\(y^2=x^3+153x+1134\) |
2.3.0.a.1, 20.6.0.a.1, 116.6.0.?, 580.12.0.? |
$[ ]$ |
5220.o1 |
5220o1 |
5220.o |
5220o |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( 2^{4} \cdot 3^{10} \cdot 5^{6} \cdot 29 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$9216$ |
$1.039831$ |
$2816075628544/36703125$ |
$1.02348$ |
$4.44270$ |
$[0, 0, 0, -6672, 207389]$ |
\(y^2=x^3-6672x+207389\) |
2.3.0.a.1, 20.6.0.b.1, 58.6.0.a.1, 580.12.0.? |
$[ ]$ |
5220.o2 |
5220o2 |
5220.o |
5220o |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{8} \cdot 3^{14} \cdot 5^{3} \cdot 29^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$18432$ |
$1.386406$ |
$-680136784/689725125$ |
$0.99577$ |
$4.66621$ |
$[0, 0, 0, -1047, 546014]$ |
\(y^2=x^3-1047x+546014\) |
2.3.0.a.1, 20.6.0.a.1, 116.6.0.?, 580.12.0.? |
$[ ]$ |
5220.p1 |
5220f1 |
5220.p |
5220f |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$174$ |
$2$ |
$0$ |
$3.274031321$ |
$1$ |
|
$2$ |
$1920$ |
$0.467610$ |
$-5364759575808/725$ |
$0.97910$ |
$4.13297$ |
$[0, 0, 0, -2757, -55719]$ |
\(y^2=x^3-2757x-55719\) |
174.2.0.? |
$[(72, 345)]$ |