Properties

Label 5202.c
Number of curves 66
Conductor 52025202
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5202.c have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
3311
171711
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1+2T+5T2 1 + 2 T + 5 T^{2} 1.5.c
77 1+7T2 1 + 7 T^{2} 1.7.a
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+10T+29T2 1 + 10 T + 29 T^{2} 1.29.k
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5202.c do not have complex multiplication.

Modular form 5202.2.a.c

Copy content sage:E.q_eigenform(10)
 
qq2+q42q5q8+2q104q112q13+q16+4q19+O(q20)q - q^{2} + q^{4} - 2 q^{5} - q^{8} + 2 q^{10} - 4 q^{11} - 2 q^{13} + q^{16} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(124488212244421488424122848214848241)\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5202.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5202.c1 5202b5 [1,1,0,72162198,235964108794][1, -1, 0, -72162198, 235964108794] 2361739090258884097/52022361739090258884097/5202 9153588914080291535889140802 [2][2] 294912294912 2.81302.8130  
5202.c2 5202b3 [1,1,0,4510188,3687697660][1, -1, 0, -4510188, 3687697660] 576615941610337/27060804576615941610337/27060804 476169695310452004476169695310452004 [2,2][2, 2] 147456147456 2.46642.4664  
5202.c3 5202b6 [1,1,0,4276098,4087382926][1, -1, 0, -4276098, 4087382926] 491411892194497/125563633938-491411892194497/125563633938 2209453840112458990338-2209453840112458990338 [2][2] 294912294912 2.81302.8130  
5202.c4 5202b2 [1,1,0,296568,51343600][1, -1, 0, -296568, 51343600] 163936758817/30338064163936758817/30338064 533837305469157264533837305469157264 [2,2][2, 2] 7372873728 2.11982.1198  
5202.c5 5202b1 [1,1,0,88488,9374144][1, -1, 0, -88488, -9374144] 4354703137/3525124354703137/352512 62029026053061126202902605306112 [2][2] 3686436864 1.77331.7733 Γ0(N)\Gamma_0(N)-optimal
5202.c6 5202b4 [1,1,0,587772,298428196][1, -1, 0, 587772, 298428196] 1276229915423/29271770281276229915423/2927177028 51507449429163835428-51507449429163835428 [2][2] 147456147456 2.46642.4664