Properties

Label 520.b
Number of curves $2$
Conductor $520$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 520.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
520.b1 520b1 \([0, -1, 0, -20, -28]\) \(3631696/65\) \(16640\) \([2]\) \(32\) \(-0.39434\) \(\Gamma_0(N)\)-optimal
520.b2 520b2 \([0, -1, 0, 0, -100]\) \(-4/4225\) \(-4326400\) \([2]\) \(64\) \(-0.047762\)  

Rank

sage: E.rank()
 

The elliptic curves in class 520.b have rank \(0\).

Complex multiplication

The elliptic curves in class 520.b do not have complex multiplication.

Modular form 520.2.a.b

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{5} + q^{9} + 2 q^{11} + q^{13} + 2 q^{15} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.