Properties

Label 520.a
Number of curves $4$
Conductor $520$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 520.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
520.a1 520a3 \([0, 0, 0, -563, -5138]\) \(9636491538/8125\) \(16640000\) \([2]\) \(128\) \(0.31312\)  
520.a2 520a2 \([0, 0, 0, -43, -42]\) \(8586756/4225\) \(4326400\) \([2, 2]\) \(64\) \(-0.033453\)  
520.a3 520a1 \([0, 0, 0, -23, 42]\) \(5256144/65\) \(16640\) \([2]\) \(32\) \(-0.38003\) \(\Gamma_0(N)\)-optimal
520.a4 520a4 \([0, 0, 0, 157, -322]\) \(208974222/142805\) \(-292464640\) \([2]\) \(128\) \(0.31312\)  

Rank

sage: E.rank()
 

The elliptic curves in class 520.a have rank \(1\).

Complex multiplication

The elliptic curves in class 520.a do not have complex multiplication.

Modular form 520.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{9} - 4 q^{11} - q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.