Properties

Label 51870n
Number of curves 4
Conductor 51870
CM no
Rank 2
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("51870.k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 51870n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
51870.k3 51870n1 [1, 1, 0, -1092, -13104] [2] 49152 \(\Gamma_0(N)\)-optimal
51870.k2 51870n2 [1, 1, 0, -3972, 80784] [2, 2] 98304  
51870.k4 51870n3 [1, 1, 0, 6948, 458616] [2] 196608  
51870.k1 51870n4 [1, 1, 0, -60972, 5769384] [2] 196608  

Rank

sage: E.rank()
 

The elliptic curves in class 51870n have rank \(2\).

Modular form 51870.2.a.k

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} - 4q^{11} - q^{12} - q^{13} + q^{14} - q^{15} + q^{16} - 2q^{17} - q^{18} - q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.