Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3-6060x-368848\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3-6060xz^2-368848z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-6060x-368848\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(17558, 2326528)$ | $4.0577358033807125082970016854$ | $\infty$ | 
Integral points
      
    \((17558,\pm 2326528)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 5184 \) | = | $2^{6} \cdot 3^{4}$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $-44530220924928$ | = | $-1 \cdot 2^{39} \cdot 3^{4} $ | 
     | 
        
| j-invariant: | $j$ | = | \( -\frac{1159088625}{2097152} \) | = | $-1 \cdot 2^{-21} \cdot 3^{2} \cdot 5^{3} \cdot 101^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3090888497175581459566884329$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.096836017345063048634241494928$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $1.1123490200903752$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.578265438067023$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.0577358033807125082970016854$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.25515985637143247861006093119$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $4.1414851391353671351557866494 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 4.141485139 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.255160 \cdot 4.057736 \cdot 4}{1^2} \\ & \approx 4.141485139\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 8064 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{29}^{*}$ | additive | 1 | 6 | 39 | 21 | 
| $3$ | $1$ | $II$ | additive | 1 | 4 | 4 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2G | 8.2.0.1 | 
| $3$ | 3B | 3.4.0.1 | 
| $7$ | 7B | 7.8.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \), index $768$, genus $21$, and generators
$\left(\begin{array}{rr} 281 & 392 \\ 112 & 393 \end{array}\right),\left(\begin{array}{rr} 73 & 402 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 426 \\ 42 & 253 \end{array}\right),\left(\begin{array}{rr} 1 & 216 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 462 & 1 \end{array}\right),\left(\begin{array}{rr} 337 & 168 \\ 336 & 169 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 168 & 1 \end{array}\right),\left(\begin{array}{rr} 419 & 462 \\ 315 & 461 \end{array}\right),\left(\begin{array}{rr} 295 & 42 \\ 231 & 211 \end{array}\right),\left(\begin{array}{rr} 22 & 321 \\ 189 & 169 \end{array}\right),\left(\begin{array}{rr} 249 & 226 \\ 448 & 345 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 420 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 168 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 463 & 282 \\ 420 & 295 \end{array}\right)$.
The torsion field $K:=\Q(E[504])$ is a degree-$15676416$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/504\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $4$ | \( 81 = 3^{4} \) | 
| $3$ | additive | $8$ | \( 64 = 2^{6} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3, 7 and 21.
Its isogeny class 5184a
consists of 4 curves linked by isogenies of
degrees dividing 21.
Twists
The minimal quadratic twist of this elliptic curve is 162c4, its twist by $-24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/3\Z\) | not in database | 
| $3$ | 3.1.648.1 | \(\Z/2\Z\) | not in database | 
| $6$ | 6.0.3359232.4 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $6$ | 6.0.90699264.1 | \(\Z/3\Z\) | not in database | 
| $6$ | 6.0.56458612224.1 | \(\Z/7\Z\) | not in database | 
| $6$ | 6.2.13436928.2 | \(\Z/6\Z\) | not in database | 
| $12$ | 12.2.5777633090469888.3 | \(\Z/4\Z\) | not in database | 
| $12$ | 12.0.8226356490141696.32 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database | 
| $12$ | 12.0.722204136308736.18 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $12$ | 12.0.3187574894260002226176.4 | \(\Z/21\Z\) | not in database | 
| $18$ | 18.6.11603727898301852489443442688.3 | \(\Z/9\Z\) | not in database | 
| $18$ | 18.0.34811183694905557468330328064.4 | \(\Z/6\Z\) | not in database | 
| $18$ | 18.0.11517827512958929223747041688027136.1 | \(\Z/14\Z\) | not in database | 
We only show fields where the torsion growth is primitive.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ss | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | - | 1,7 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | - | - | 0,0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.