Properties

Label 5184.p
Number of curves $4$
Conductor $5184$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5184.p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5184.p do not have complex multiplication.

Modular form 5184.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{7} + 3 q^{11} - 2 q^{13} + 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 21 & 7 \\ 3 & 1 & 7 & 21 \\ 21 & 7 & 1 & 3 \\ 7 & 21 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5184.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5184.p1 5184bd3 \([0, 0, 0, -68940, -6967152]\) \(-189613868625/128\) \(-24461180928\) \([]\) \(8064\) \(1.3091\)  
5184.p2 5184bd4 \([0, 0, 0, -54540, -9958896]\) \(-1159088625/2097152\) \(-32462531054272512\) \([]\) \(24192\) \(1.8584\)  
5184.p3 5184bd2 \([0, 0, 0, -2700, 56592]\) \(-140625/8\) \(-123834728448\) \([]\) \(3456\) \(0.88544\)  
5184.p4 5184bd1 \([0, 0, 0, 180, 144]\) \(3375/2\) \(-382205952\) \([]\) \(1152\) \(0.33613\) \(\Gamma_0(N)\)-optimal