# Properties

 Label 5184.o3 Conductor $5184$ Discriminant $-169869312$ j-invariant $$-\frac{140625}{8}$$ CM no Rank $0$ Torsion structure trivial

# Related objects

Show commands: Magma / Oscar / PariGP / SageMath

## Simplified equation

 $$y^2=x^3-300x-2096$$ y^2=x^3-300x-2096 (homogenize, simplify) $$y^2z=x^3-300xz^2-2096z^3$$ y^2z=x^3-300xz^2-2096z^3 (dehomogenize, simplify) $$y^2=x^3-300x-2096$$ y^2=x^3-300x-2096 (homogenize, minimize)

comment: Define the curve

sage: E = EllipticCurve([0, 0, 0, -300, -2096])

gp: E = ellinit([0, 0, 0, -300, -2096])

magma: E := EllipticCurve([0, 0, 0, -300, -2096]);

oscar: E = EllipticCurve([0, 0, 0, -300, -2096])

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

oscar: short_weierstrass_model(E)

## Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);

## Integral points

None

comment: Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

## Invariants

 Conductor: $$5184$$ = $2^{6} \cdot 3^{4}$ comment: Conductor  sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E);  oscar: conductor(E) Discriminant: $-169869312$ = $-1 \cdot 2^{21} \cdot 3^{4}$ comment: Discriminant  sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E);  oscar: discriminant(E) j-invariant: $$-\frac{140625}{8}$$ = $-1 \cdot 2^{-3} \cdot 3^{2} \cdot 5^{6}$ comment: j-invariant  sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E);  oscar: j_invariant(E) Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.33613377518990149340401206119\dots$ gp: ellheight(E)  magma: FaltingsHeight(E);  oscar: faltings_height(E) Stable Faltings height: $-1.0697910918727197011869178666\dots$ magma: StableFaltingsHeight(E);  oscar: stable_faltings_height(E)

## BSD invariants

 Analytic rank: $0$ sage: E.analytic_rank()  gp: ellanalyticrank(E)  magma: AnalyticRank(E); Regulator: $1$ comment: Regulator  sage: E.regulator()  G = E.gen \\ if available matdet(ellheightmatrix(E,G))  magma: Regulator(E); Real period: $0.57168595026877761816625775563\dots$ comment: Real Period  sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Tamagawa product: $2$  = $2\cdot1$ comment: Tamagawa numbers  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E);  oscar: tamagawa_numbers(E) Torsion order: $1$ comment: Torsion order  sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E));  oscar: prod(torsion_structure(E)[1]) Analytic order of Ш: $1$ (exact) comment: Order of Sha  sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Special value: $L(E,1)$ ≈ $1.1433719005375552363325155113$ comment: Special L-value  r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: [r,L1r] = ellanalyticrank(E); L1r/r!  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

## BSD formula

$\displaystyle 1.143371901 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.571686 \cdot 1.000000 \cdot 2}{1^2} \approx 1.143371901$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)

E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;

Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();

omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();

assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))

/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */

E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;

sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);

reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);

assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);

## Modular invariants

$$q - 2 q^{7} - 3 q^{11} - 2 q^{13} - 3 q^{17} - q^{19} + O(q^{20})$$

comment: q-expansion of modular form

sage: E.q_eigenform(20)

\\ actual modular form, use for small N

[mf,F] = mffromell(E)

Ser(mfcoefs(mf,20),q)

\\ or just the series

Ser(ellan(E,20),q)*q

magma: ModularForm(E);

Modular degree: 1152
comment: Modular degree

sage: E.modular_degree()

gp: ellmoddegree(E)

magma: ModularDegree(E);

$\Gamma_0(N)$-optimal: yes
Manin constant: 1
comment: Manin constant

magma: ManinConstant(E);

## Local data

This elliptic curve is not semistable. There are 2 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{11}^{*}$ Additive -1 6 21 3
$3$ $1$ $II$ Additive 1 4 4 0

comment: Local data

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]

## Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2G 8.2.0.1
$3$ 3B 3.4.0.1
$7$ 7B 7.8.0.1

comment: mod p Galois image

sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

gens = [[281, 392, 112, 393], [1, 426, 42, 253], [1, 216, 0, 1], [1, 0, 462, 1], [209, 462, 273, 293], [337, 168, 336, 169], [1, 0, 168, 1], [419, 462, 315, 461], [22, 321, 189, 169], [1, 42, 0, 73], [1, 0, 420, 1], [1, 168, 0, 1], [177, 10, 448, 417], [463, 282, 420, 295]]

GL(2,Integers(504)).subgroup(gens)

Gens := [[281, 392, 112, 393], [1, 426, 42, 253], [1, 216, 0, 1], [1, 0, 462, 1], [209, 462, 273, 293], [337, 168, 336, 169], [1, 0, 168, 1], [419, 462, 315, 461], [22, 321, 189, 169], [1, 42, 0, 73], [1, 0, 420, 1], [1, 168, 0, 1], [177, 10, 448, 417], [463, 282, 420, 295]];

sub<GL(2,Integers(504))|Gens>;

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level $$504 = 2^{3} \cdot 3^{2} \cdot 7$$, index $768$, genus $21$, and generators

$\left(\begin{array}{rr} 281 & 392 \\ 112 & 393 \end{array}\right),\left(\begin{array}{rr} 1 & 426 \\ 42 & 253 \end{array}\right),\left(\begin{array}{rr} 1 & 216 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 462 & 1 \end{array}\right),\left(\begin{array}{rr} 209 & 462 \\ 273 & 293 \end{array}\right),\left(\begin{array}{rr} 337 & 168 \\ 336 & 169 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 168 & 1 \end{array}\right),\left(\begin{array}{rr} 419 & 462 \\ 315 & 461 \end{array}\right),\left(\begin{array}{rr} 22 & 321 \\ 189 & 169 \end{array}\right),\left(\begin{array}{rr} 1 & 42 \\ 0 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 420 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 168 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 177 & 10 \\ 448 & 417 \end{array}\right),\left(\begin{array}{rr} 463 & 282 \\ 420 & 295 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[504])$ is a degree-$15676416$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/504\Z)$.

## Isogenies

gp: ellisomat(E)

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3, 7 and 21.
Its isogeny class 5184.o consists of 4 curves linked by isogenies of degrees dividing 21.

## Twists

The minimal quadratic twist of this elliptic curve is 162.b3, its twist by $24$.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-2})$$ $$\Z/3\Z$$ 2.0.8.1-13122.5-e2 $3$ 3.1.648.1 $$\Z/2\Z$$ Not in database $6$ 6.0.3359232.4 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database $6$ 6.2.90699264.1 $$\Z/3\Z$$ Not in database $6$ 6.0.3359232.1 $$\Z/21\Z$$ Not in database $12$ 12.2.5777633090469888.10 $$\Z/4\Z$$ Not in database $12$ 12.0.8226356490141696.17 $$\Z/3\Z \oplus \Z/3\Z$$ Not in database $18$ 18.0.11603727898301852489443442688.7 $$\Z/9\Z$$ Not in database $18$ 18.2.543924745232899335442661376.1 $$\Z/6\Z$$ Not in database $18$ 18.0.37907050706572935168.1 $$\Z/2\Z \oplus \Z/42\Z$$ Not in database

We only show fields where the torsion growth is primitive.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add add ss ord ord ord ord ord ord ord ord ord ord ord ord - - 0,0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0,0 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## $p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.